
A few applications of the SVD

Many methods require to approximate the original data (matrix) by
a low rank matrix before attempting to solve the original problem

ä Regularization methods require the solution of a least-squares
linear system Ax = b approximately in the dominant singular
space of A

ä The Latent Semantic Indexing (LSI) method in information
retrieval, performs the “query” in the dominant singular space of
A

ä Methods utilizing Principal Component Analysis, e.g. Face
Recognition.
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Commonality: Approximate A (or A†) by a lower rank approx-
imation Ak (using dominant singular space) before solving original
problem.

ä This approximation captures the main features of the data while
getting rid of noise and redundancy

Note: Common misconception: ‘we need to reduce dimension in
order to reduce computational cost’. In reality: using less
information often yields better results. This is the problem of
overfitting.

ä Good illustration: Information Retrieval (IR)
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Information Retrieval: Vector Space Model

ä Given: a collection of documents (columns of a matrix A) and
a query vector q.

ä Collection represented by an m× n term by document matrix
with aij = LijGiNj

ä Queries (‘pseudo-documents’) q are represented similarly to a
column
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Vector Space Model - continued

ä Problem: find a column of A that best matches q

ä Similarity metric: angle between the column and q - Use cosines:

|cTq|
‖c‖2‖q‖2

ä To rank all documents we need to compute

s = ATq

ä s = similarity vector.

ä Literal matching – not very effective.
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Use of the SVD

ä Many problems with literal matching: polysemy, synonymy, ...

ä Need to extract intrinsic information – or underlying “semantic”
information –

ä Solution (LSI): replace matrix A by a low rank approximation
using the Singular Value Decomposition (SVD)

A = UΣV T → Ak = UkΣkV
T
k

ä Uk : term space, Vk: document space.

ä Refer to this as Truncated SVD (TSVD) approach
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New similarity vector:

sk = AT
kq = VkΣkU

T
k q

Issues:

ä Problem 1: How to select k?

ä Problem 2: computational cost (memory + computation)

ä Problem 3: updates [e.g. google data changes all the time]

ä Not practical for very large sets
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LSI : an example

%% D1 : INFANT & TODLER first aid
%% D2 : BABIES & CHILDREN’s room for your HOME
%% D3 : CHILD SAFETY at HOME
%% D4 : Your BABY’s HEALTH and SAFETY
%% : From INFANT to TODDLER
%% D5 : BABY PROOFING basics
%% D6 : Your GUIDE to easy rust PROOFING
%% D7 : Beanie BABIES collector’s GUIDE
%% D8 : SAFETY GUIDE for CHILD PROOFING your HOME
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% TERMS: 1:BABY 2:CHILD 3:GUIDE 4:HEALTH 5:HOME
%% 6:INFANT 7:PROOFING 8:SAFETY 9:TODDLER
%% Source: Berry and Browne, SIAM., ’99

ä Number of documents: 8

ä Number of terms: 9
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ä Raw matrix (before scaling).

A =

d1 d2 d3 d4 d5 d6 d7 d8
1 1 1 1 bab
1 1 1 chi

1 1 1 gui
1 hea

1 1 1 hom
1 1 inf

1 1 1 pro
1 1 1 saf

1 1 tod

-1 Get the anwser to the query Child Safety, so

q = [0 1 0 0 0 0 0 1 0]

using cosines and then using LSI with k = 3.
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Dimension reduction

Dimensionality Reduction (DR) techniques pervasive to many appli-
cations

ä Often main goal of dimension reduction is not to reduce compu-
tational cost. Instead:

• Dimension reduction used to reduce noise and redundancy in data

• Dimension reduction used to discover patterns (e.g., supervised
learning)

ä Techniques depend on desirable features or application: Preserve
angles? Preserve distances? Maximize variance? ..
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The problem

ä Given d� m find a mapping
Φ : x ∈ Rm −→ y ∈ Rd
ä Mapping may be explicit (e.g.,
y = V Tx)
ä Or implicit (nonlinear)

Practically:
Find a low-dimensional representation Y ∈
Rd×n of X ∈ Rm×n.

ä Two classes of methods: (1) projection techniques and (2)
nonlinear implicit methods.
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Example: Digit images (a sample of 30)
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A few 2-D ’reductions’:
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Projection-based Dimensionality Reduction

Given: a data set X = [x1, x2, . . . , xn], and d the dimension
of the desired reduced space Y .

Want: a linear transformation from X to Y

v T
d

m

m

d

n

X

Y

n

X ∈ Rm×n
V ∈ Rm×d
Y = V >X
→ Y ∈ Rd×n

ä m-dimens. objects (xi) ‘flattened’ to d-dimens. space (yi)

Problem: Find the best such mapping (optimization) given that
the yi’s must satisfy certain constraints

11-13 (articles) – SVDapp

11-13

Principal Component Analysis (PCA)

ä PCA: find V (orthogonal) so that projected data Y = V TX
has maximum variance

ä Maximize over all orthogonal m× d matrices V :
∑

i

‖yi −
1

n

∑

j

yj‖2
2 = · · · = Tr

[
V >X̄X̄>V

]

Where: X̄ = [x̄1, · · · , x̄n] with x̄i = xi − µ, µ = mean.

Solution:

V = { dominant eigenvectors } of the covariance matrix

ä i.e., Optimal V = Set of left singular vectors of X̄ associated
with d largest singular values.
11-14 (articles) – SVDapp

11-14

-2 Show that X̄ = X(I− 1
n
eeT) (here e = vector of all ones).

What does the projector (I − 1
n
eeT) do?

-3 Show that solution V also minimizes ‘reconstruction error’ ..

∑

i

‖x̄i − V V T x̄i‖2 =
∑

i

‖x̄i − V ȳi‖2

-4 .. and that it also maximizes
∑

i,j ‖yi − yj‖2
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Matrix Completion Problem

Consider a table of movie ratings. You want to predict missing ratings
by assuming commonality (low rank matrix).

given data predictions
movie Paul Jane Ann Paul Jane Ann
Title-1 –1 3 –1 –1.2 1.7 –0.7
Title-2 4 x 3 2.8 –1.2 2.5
Title-3 –3 1 –4 –2.7 1.0 –2.5
Title-4 x –1 –1 –0.5 –0.3 –0.6
Title-5 3 –2 1 1.8 –1.4 1.4
Title-6 –2 3 x –1.6 1.8 –1.2

A X

ä Minimize ‖(X −A)mask‖2
F + 4‖X‖∗

“minimize sum-of-squares of deviations from known ratings
plus sum of singular values of solution (to reduce the rank).”
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