A few applications of the SVD

Many methods require to approximate the original data (matrix) by
a low rank matrix before attempting to solve the original problem

»  Regularization methods require the solution of a least-squares
linear system Az = b approximately in the dominant singular
space of A

» The Latent Semantic Indexing (LSI) method in information
retrieval, performs the “query” in the dominant singular space of

A

»  Methods utilizing Principal Component Analysis, e.g. Face
Recognition.
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Commonality:  Approximate A (or AT) by a lower rank approx-
imation Ay (using dominant singular space) before solving original
problem.

»  This approximation captures the main features of the data while
getting rid of noise and redundancy

Note: Common misconception: ‘we need to reduce dimension in
order to reduce computational cost’. In reality: using less
information often yields better results. This is the problem of
overfitting.

»  Good illustration: Information Retrieval (IR)
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Information Retrieval: Vector Space Model

»  Given: a collection of documents (columns of a matrix A) and
a query vector q.

»  Collection represented by an m X m term by document matrix
with |aij = LijGiNj|

»  Queries (‘pseudo-documents’) q are represented similarly to a
column
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Vector Space Model - continued

»  Problem: find a column of A that best matches g

» Similarity metric: angle between the column and q - Use cosines:

c"q|
lell2llqll2
»  To rank all documents we need to compute

s = ATq

» s = similarity vector.

» Literal matching — not very effective.
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Use of the SVD

»  Many problems with literal matching: polysemy, synonymy, ...

» Need to extract intrinsic information — or underlying “semantic”
information —

» Solution (LSI): replace matrix A by a low rank approximation
using the Singular Value Decomposition (SVD)

» Uy : term space, Vi: document space.

» Refer to this as Truncated SVD (TSVD) approach

115 (articles) — SVDapp

11-5

New similarity vector:

sk = ALq = ViZkUl'q

Issues:

»  Problem 1: How to select k7

Problem 2: computational cost (memory + computation)

>
»  Problem 3: updates [e.g. google data changes all the time]
>

Not practical for very large sets
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LSI : an example

%% D1 : INFANT & TODLER first aid

%% D2 : BABIES & CHILDREN’s room for your HOME
%% D3 : CHILD SAFETY at HOME

%% D4 : Your BABY’s HEALTH and SAFETY

Do : From INFANT to TODDLER

%% D5 : BABY PROOFING basics

%% D6 : Your GUIDE to easy rust PROOFING

%% D7 : Beanie BABIES collector’s GUIDE

%% D SAFETY GUIDE for CHILD PROOFING your HOME
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
hh T HILD 3:GUIDE 4:HEALTH 5:HOME
Do 6 INFANT 7 PRDOFING 8:SAFETY 9:TODDLER

%% Source: Berry and Browne, SIAM., ’99

»  Number of documents: 8

» Number of terms: 9

» Raw matrix (before scaling).

dl d2 d3 d4 d5 d6 d7 d8
1 11 1

11 1

1 11
1

A= 11 1
1 1

11 1

11 1
1 1

bab
chi
gut
hea
hom
inf
pro

saf
tod

Get the anwser to the query Child Safety, so

gq=[010000010]

using cosines and then using LS| with & = 3.
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Dimensionality Reduction (DR) techniques pervasive to many appli-
cations » Given d < m find a mapping
»  Often main goal of dimension reduction is not to reduce compu- P:x €eR" —y €R? ,j—>

tational cost. Instead: » Mapping may be explicit (e.g.,

y=V'z)
® Dimension reduction used to reduce noise and redundancy in data »  Or implicit (nonlinear) /.

e Dimension reduction used to discover patterns (e.g., supervised
learning)

»  Techniques depend on desirable features or application: Preserve
angles? Preserve distances? Maximize variance? ..

Find a low-dimensional representation Y &

Practically: RIXn of X € R™X™

» Two classes of methods: (1) projection techniques and (2)

nonlinear implicit methods.
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Example: Digit images (a sample of 30) A few 2-D 'reductions’:
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Projection-based Dimensionality Reduction

Given: a data set X = [x1,®2,...,T,], and d the dimension
of the desired reduced space Y.

Want: a linear transformation from X to Y

m X X e Rmxn
- V € Rmxd
af [ vT ]| Y el Y =VTX
R — Y € Réx»

» m-dimens. objects (x;) ‘flattened’ to d-dimens. space (y;)

Problem:  Find the best such mapping (optimization) given that
the y;'s must satisfy certain constraints
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Principal Component Analysis (PCA)

» PCA: find V (orthogonal) so that projected data Y = VTX
has maximum variance

»  Maximize over all orthogonal m X d matrices V:

1 _
Slyi— Syl = =Tr [VTXXTV]
? J

Where: X = [®1,+-+ ,&,] with & = x; — p, g = mean.

Solution:

V = { dominant eigenvectors } of the covariance matrix

» ie., Optimal V = Set of left singular vectors of X associated
with d largest singular values.
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Show that X = X (I — %eeT) (here e = vector of all ones).

What does the projector (I — +ee™’) do?

Show that solution V' also minimizes ‘reconstruction error’ ..
olE—vvTE|P =) |l@ - Vil
A i

. and that it also maximizes 3, . |lyi — y;l|®
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Matriz Completion Problem

Consider a table of movie ratings. You want to predict missing ratings
by assuming commonality (low rank matrix).

given data predictions

movie | Paul|Jane|Ann|Paul|Jane| Ann
Title-1| -1 3/ -1 -1.2) 1.7 -0.7
Title-2 41 x 3] 28/-1.2] 25
Title-3) -3 1| -4|-2.7] 1.0|-25
Title-4] x| -1 -1/-0.5/-0.3|-0.6
Title-5 3] -2/ 1] 18 -14| 14
Title-6| -2 3] x|-16 1.8 -12
A X

»  Minimize ||(X — A)paskl|% + 4] X ||
“minimize sum-of-squares of deviations from known ratings
plus sum of singular values of solution (to reduce the rank)
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