THE SINGULAR VALUE DECOMPOSITION (Cont.)

e The Pseudo-inverse

Use of SVD for least-squares problems

Application to regularization

e Numerical rank
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Pseudo-inverse of an arbitrary matrix

» Let A = UXVT which we rewrite as

¥ 0\ (VF
A= (U Us) <01 0> (V;T) = U, V)"

Then the pseudo in- . e "9 .
verse of A is Al =WVXTU; = Z —vju’

Uit
o

Jj=1

»  The pseudo-inverse of A is the mapping from a vector b to the
solution min, || Az — b||3 that has minimal norm (to be shown)

» In the full-rank overdetermined case, the normal equations yield
T = (ATA)_lATb
%/_/
Af
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Least-squares problem via the SVD

Pb: min ||b — Ax||2 in general case. Consider SVD of A:

T

A= (Ul U2) (2(3)1 g) (%ﬁ) = Zaiviuf
i=1
Then left multiply by U7 to get
T
o |(53)2)- (5
o (2)-():

What are all least-squares solutions to the system? Among
these which one has minimum norm?

2

2
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Answer:  From above, must have y; = El_lUlTb and y2 =
anything (free).

»  Recall that x = V'y and write

x = [Vi, Vi (Z;) = Viys + Vays

= WViE['Ub + Vays
= ATb + oy,

» Note: ATb € Ran(AT) and Voy, € Null(A).

»  Therefore: least-squares solutions are of the form Atb + w
where w € Null(A).

»  Smallest norm when y» = 0.
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»  Minimum norm solution to min,, || Az — b||3 satisfies ¥1y; =
UlTb, y2 = 0. Itis:

zrs = Vi3 'UTb = At
If A € R™X™ what are the dimensions of AT?, ATA?,
AAT?

Show that AT A is an orthogonal projector. What are its range
and null-space?

Same questions for AAT.
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Moore-Penrose Inverse

The pseudo-inverse of A is given by

p ) " vul
T 1 T 3
A_V(O O)U_E '

Moore-Penrose conditions:

The pseudo inverse of a matrix is uniquely determined by these four
conditions:

(1) AXA=A 2) XAX = X
(3) (AX)H = AX (4) (XA)H = XA

» In the full-rank overdetermined case, AT = (ATA)~tAT
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Least-squares problems and the SVD

»  SVD can give much information about solving overdetermined
and underdetermined linear systems.

Let A be an m X m matrix and A = UXV7T its SVD with
r =rank(A), V = [v1,...,0,) U = [t1,...,Up]. Then
- ulb

LLS = E

=1

U4
g;

minimizes ||b — Ax||2 and has the smallest 2-norm among all
possible minimizers. In addition,

prs = ||b — Azrs||z = ||z]|2 with 2 = [tyi1y -« oy Um]Th
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Least-squares problems and pseudo-inverses

» A restatement of the first part of the previous result:

Consider the general linear least-squares problem
min [|z]lz, §={z € R"|||b— Aw||;min}.
X

This problem always has a unique solution given by

z=A'b
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10 2 0
Consider the matrix: A <0 0 —2 1)

e Compute the thin SVD of A

o Find the matrix B of rank 1 which is the closest to the above
matrix in the 2-norm sense.

e What is the pseudo-inverse of A?
e What is the pseudo-inverse of B?

e Find the vector & of smallest norm which minimizes ||b — Ax||2
with b = (1,1)T

e Find the vector x of smallest norm which minimizes ||b — Bx||2
with b = (1,1)T
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Ill-conditioned systems and the SVD

» Let Abem X mand A =UXVT its SVD
» Solution of Az =bisxz=A"1b=>" uib V;

i=1 o,
» When A is very ill-conditioned, it has many small singular values.
The division by these small ;'s will amplify any noise in the data. If

b = b+ € then

m m
A-15 Z u; b 'u,zre
== V; V;
g; g;
i=1 i=1 "
~——
Error

»  Result: solution could be completely meaningless.
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Remedy: | SVD regularization

Truncate the SVD by only keeping the s that are > T, where
T is a threshold
» Gives the Truncated SVD solution (TSVD solution:)

uld
TTSVD = E v;

o;

UiZT

» Many applications [e.g., Image and signal processing,..]
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Numerical rank and the SVD

» Assuming the original matrix A is exactly of rank k the computed
SVD of A will be the SVD of a nearby matrix A + E — Can show:
|6s — 0i] < aoqu

»  Result: zero singular values will yield small computed singular
values and 7 larger sing. values.

»  Reverse problem: numerical rank — The e-rank of A :

re = min{rank(B) : B € R™*", ||A — B||> < €},

Show that 7. equals the number sing. values that are >¢€

Show: 7 equals the number of columns of A that are linearly
independent for any perturbation of A with norm < €.

»  Practical problem : How to set €7
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Pseudo inverses of full-rank matrices

Case I: m > n | Then AT = (ATA)~1AT

» ThinSVDis A = U121V1T and Vi, 3 are n X n. Then:
(ATA)1AT = (VSRVT) Wiz, UT

= VISV Vs, UT
— i T
= Al
01
. 1 2 )
Pseudo-inverse of 9 _1 is?
01
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Case 22 m < n | Then AT = AT(AAT)~!

» ThinSVDis A = U121V1T. Now Uy, 31 are m X m and:
AT(AAT) ' = w»ie U] U 22Ul
= s Ulu,s2uT
= W, 22UT
=Wyt
= Al

01 2 0
; y o
Example: | Pseudo-inverse of (1 5 _1 1) is’

»  Mnemonic: The pseudo inverse of A is AT completed by the
inverse of the smallest of (AT A)~! or (AAT)~! where it fits (i.e.,
left or right)
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