THE SINGULAR VALUE DECOMPOSITION (Cont.)

The Pseudo-inverse
Use of SVD for least-squares problems
Application to regularization

Numerical rank
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Pseudo-inverse of an arbitrary matrix

» let A = UXVT which we rewrite as

¥, 0\ (V!
A= (U Uy) ( 0 0> <VT) U, V"

T

1
AT = VlEl_lUir — Z —'vjur

, J
O

Then the pseudo in-
verse of A is

7=1

»  The pseudo-inverse of A is the mapping from a vector b to the
solution min, || Az — b||% that has minimal norm (to be shown)

» In the full-rank overdetermined case, the normal equations yield

x = (ATA)'ATb
At
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Least-squares problem via the SVD

Pb: min ||b — Ax]||2 in general case. Consider SVD of A:

T

A = (U1 Uz) (2(3)1 8) (‘é;) = Zaiviu;.r
i=1
Then left multiply by U7 to get
ez = | (50) () - (o)
()= (1)

#n1| What are all least-squares solutions to the system? Among
these which one has minimum norm?

2

2
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Answer: From above, must have y; = El_lU;—Fb and yo =
anything (free).

»  Recall that € = V'y and write

x = Vi, Vs <y1> = Viyr + Vayo

Yo
= i37'U'b + Vays
= Ao + Vay,

» Note: ATb € Ran(A7T) and Voy, € Null(A).

»  Therefore: least-squares solutions are of the form AT + w
where w € Null(A).

»  Smallest norm when y, = 0.
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»  Minimum norm solution to min,, || Ax — b||5 satisfies X1y, =
UlTb, yo = 0. It is:

rrs = Vi3] 'UTb = A'b

Zl If A € R™X™ what are the dimensions of AT?. ATA?
AAT?

#33] Show that ATA is an orthogonal projector. What are its range
and null-space?

#14] Same questions for AAT.
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Moore-Penrose Inverse

The pseudo-inverse of A is given by

»-19 " v
T 1 T 7
ar=v (%)=

=1

Moore-Penrose conditions: I

The pseudo inverse of a matrix is uniquely determined by these four
conditions:

(1) AXA=A (2) XAX = X
(3) (AX)H = AX (4) (XA)H = XA

» In the full-rank overdetermined case, AT = (ATA)~1AT
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Least-squares problems and the SVD

» SVD can give much information about solving overdetermined
and underdetermined linear systems.

Let A be an @ X m matrix and A = UXV?T its SVD with
r =rank(A), V = [v,...,0,] U = [ug,...,Uup]. Then

T
u;?rb

LLs = E (2
g;

=1

minimizes ||b — Ax||2 and has the smallest 2-norm among all
possible minimizers. In addition,

prs = ||b — Azrs|ls = ||z||2 with 2 = [tyi1y .-y U] ' D
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Least-squares problems and pseudo-inverses

» A restatement of the first part of the previous result:

Consider the general linear least-squares problem

min [|lz]l2, S ={z € R"||}b— Az||,min}.

This problem always has a unique solution given by

r = A'b
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| _ 10 2 0
#vs| Consider the matrix: A= (O 0 —2 1)

e Compute the thin SVD of A

® Find the matrix B of rank 1 which is the closest to the above
matrix in the 2-norm sense.

e What is the pseudo-inverse of A?
e What is the pseudo-inverse of B?

e Find the vector & of smallest norm which minimizes ||b — Ax||2
with b = (1,1)7

e Find the vector & of smallest norm which minimizes ||b — Bx||2
with b = (1,1)7
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Ill-conditioned systems and the SVD

» Let Abem X mand A =UXV?T its SVD
> Solution of Az = bisxz = A~ 1b =57 “ly,

i=1 o,
» When A is very ill-conditioned, it has many small singular values.
The division by these small o;'s will amplify any noise in the data. If

b = b -+ € then

A~ = E ' v + g uiev-
— 7 7

g; g;

Z:::]_ ¢ i:::]. ¢
W

Error

»  Result: solution could be completely meaningless.
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Remedy: | SVD regularization

Truncate the SVD by only keeping the o}s that are > T, where
T is a threshold

» Gives the Truncated SVD solution (TSVD solution:)

u;frb
LTSVD — E V;

O

o;>T

»  Many applications [e.g., Image and signal processing,..]
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Numerical rank and the SV D

»  Assuming the original matrix A is exactly of rank k the computed
SVD of A will be the SVD of a nearby matrix A + E — Can show:
|6; — 04| < aou

»  Result: zero singular values will yield small computed singular
values and 7 larger sing. values.

» Reverse problem: numerical rank — The e-rank of A :

re = min{rank(B) : B € R™*", ||A — B||2 < €},

#16| Show that 7 equals the number sing. values that are >¢

#17] Show: 7. equals the number of columns of A that are linearly
independent for any perturbation of A with norm < €.

»  Practical problem : How to set €7
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Pseudo 1nverses of full-rank matrices
Case I: m > n |Then AT = (ATA) AT

» ThinSVD is A = U121V1T and V3,31 are n X n. Then:
(ATA) AT = (VERV) T VisUT

= ViZ PV vis Uy
= 'ut
— Al

/g;\

Example: | Pseudo-inverse of 5 _1 Is?

\0 1)
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Case 2: m < n |Then AT = AT(AAT)!

» Thin SVD is A = U121V1T. Now Uj, 331 are m X m and:

AT (AAY) T = iU U B0
= VU U 7°U)
=V, 37°U)
=W 'u)
= Al

01 2 O
N _l L] ?
Example: | Pseudo-inverse of (1 5 _1 1) IS’

»  Mnemonic: The pseudo inverse of A is AT completed by the

inverse of the smallest of (AT A)™! or (AAT) ™1 where it fits (i.e.,
left or right)
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