$\not \sim 1$

How would you get an orthonormal basis of \boldsymbol{X} ?

Solution: Just take any basis and orthonormalize it with Gram-Schmidt of Householder QR.

Show how you can get a decomposition in which C is lower (or upper) triangular, from the above factorization.

Solution: You first get any factorization in the form shown in Page 9-7 – Then to get an upper triangular C you use the QR factorization C = QR. Then U is replaced by

$$U_{new} = U imes egin{pmatrix} Q & 0 \ 0 & I \end{pmatrix}$$

and C is replaced by R. To get a lower triangular C you can use the same trick applied to A^T and transpose the final result. Mow can you get the ULV decomposition by using only the Householder QR factorization (possibly with pivoting)?

Solution: You first get the Householder QR factorization $A = Q_1 R_1$ of the matrix A. The second step is to perform a Householder QR factorization of the matrix R_1^T , so you will get: $R_1^T = Q_2 R_2$. The final step is to write:

$$A = Q_1 st R_2^T st Q_2^T \equiv URV^T$$

where $U = Q_1 \in \mathbb{R}^{m \times m}$; $V = Q_2 \in \mathbb{R}^{n \times n}$; $R = R_2 \in \mathbb{R}^{m \times n}$

 \square In the proof of the SVD decomposition, define U, V as single Householder reflectors.

Solution: We deal with U only [proceed similarly with V]. We need a matrix $P = I - 2ww^T$ such that the first column of A is u_1 and all columns are orthonormal. The second requirement is satisfied by default since P is unitary. Note that what if P is available we will have $Pu_1 = e_1$ because $P^2 = I$. Therefore, the wanted w is simply the vector that transforms the vector u_1 into αe_1

4 How can you obtain the thin SVD from the QR factorization of A and the SVD of an $n \times n$ matrix?

Solution: We first get the thin QR factorization of A, namely A = QR where $Q \in \mathbb{R}^{m \times n}$ and $R \in \mathbb{R}^{n \times n}$; Then we can get the SVD $R = U_R \Sigma V_R^T$ of R and this yields:

$$A = Q \times U_R \Sigma_R V_R^T \to A = U \Sigma V^T$$
, with $U = Q \times U_R$; $\Sigma = \Sigma_R$; $V = V_R$.