2 Show that each A_k [A(1:k, 1:k) in matlab notation] is SPD.

Solution: Let x be any vector in \mathbb{R}^k and consider the vector y of \mathbb{R}^n obtained by stacking x followed by n - k zeros. Then it can be easily seen that : $(A_k x, x) = (Ay, y)$ and since A is SPD then (Ay, y) > 0 and therefore $(A_k x, x) > 0$ for any x in \mathbb{R}^k . Hence A_k is SPD.

\swarrow_2 Consequence $\det(A_k) > 0$

Solution: This is because the determinant is the product of the eigenvalues which are real positive (see notes).

43 If **A** is SPD then for any $n \times k$ matrix **X** of rank **k**, the matrix $X^T A X$ is SPD.

Solution: For any $v \in \mathbb{R}^k$ we have $(X^T A X v, v) = (A X v, X v)$. In addition, since X is of full rank, then Xv cannot be zero if v is nonzero. Therefore we have (A X v, X v) > 0.

A Show that if $A^T = A$ and $(Ax, x) = 0 \ \forall x$ then A = 0.

Solution: The condition implies that for all x, y we have (A(x+y), x+y) = 0. Now expand this as: (Ax, x) + (Ay, y) + 2(Ax, y) = 0 for all x, y which shows that $(Ax, y) = 0 \forall x, y$. This implies that A = 0 (e.g. take $x = e_j, y = e_i$)...

2 Show: A nonzero matrix **A** is indefinite iff $\exists x, y : (Ax, x)(Ay, y) < 0$.

Solution:

 \leftarrow Trivial. The matrix cant be PSD or NSD under the conditon

→ Need to prove: If A is indefinite then there exist such that x, y : (Ax, x)(Ay, y) < 0. Assume contrary is true, i.e., $\forall x, y(Ax, x)(Ay, y) \ge 0$. There is at least one x_0 such that (Ax_0, x_0) is nonzero, otherwise A = 0 from previous question. Assume $(Ax_0, x_0) > 0$. Then $\forall y(Ax_0, x_0)(Ay, y) \ge 0$. which implies $\forall y : (Ay, y) \ge 0$, i.e., A is positive semi-definite. This contradicts the assumption that A is neither positive nor negative semi-definite [