
CSci 5304, F’19 Solution keys to some exercises from: Set 4

-1 Non associativity in the presence of round-off.

Solution: This is done in a class demo and the diary should be posted. Here are the commands.

n = 10000;

a = randn(n,1); b = randn(n,1); c = randn(n,1);

t = ((a+b)+c == a+(b+c));

sum(t)

Right-hand side in 3rd line returns 1 for each instance when the two numbers are the same.

-2 Find machine epsilon in matlab.

Solution:

u = 1;

4-1

for i=0:999

fprintf(1,’ i = %d , u = %e \n’,i,u)

if (1.0 +u == 1.0) break, end

u = u/2;

end

u = u*2

-4 Proof of Lemma: If |δi| ≤ u and nu < 1 then

Πn
i=1(1 + δi) = 1 + θn where |θn| ≤

nu

1− nu

Solution:

The proof is by induction on n.

1) Basis of induction. When n = 1 then the product reduces to 1 + δi and so we can take

4-2

θn = δn and we know that |δn| ≤ u from the assumptions and so

|θn| ≤ u ≤
u

1− u
,

as desired.

2) Induction step. Assume now that the result as stated is true for n and consider a product

with n + 1 terms: Πn+1
i=1 (1 + δi). We can write this as (1 + δn+1)Π

n
i=1(1 + δi) and from

the induction hypothesis we get:

Πn+1
i=1 (1 + δi) = (1 + θn)(1 + δn+1) = 1 + θn + δn+1 + θnδn+1

with θn satisfying the inequality θn ≤ (nu)/(1 − nu). We call θn+1 the quantity θn+1 =

θn + δn+1 + θnδn+1, and we have

|θn+1| = |θn + δn+1 + θnδn+1|

≤
nu

1− nu
+ u +

nu

1− nu
× u =

nu + u (1− nu) + nu 2

1− nu
=

(n+ 1)u

1− nu

≤
(n+ 1)u

1− (n+ 1)u)

4-3

This establishes the result with n replaced by n+ 1 as wanted and completes the proof.

4-4

Supplemental notes: Floating Point Arithmetic

In most computing systems, real numbers are represented in two
parts: A mantissa and an exponent. If the representation is in the
base β then:

x = ±(.d1d2 · · · dm)ββ
e

ä .d1d2 · · · dm is a fraction in the base-β representation

ä e is an integer - can be negative, positive or zero.

ä Generally the form is normalized in that d1 6= 0.

4-5 – – –

4-5

Example: In base 10 (for illustration)

1. 1000.12345 can be written as

0.10001234510 × 104

2. 0.000812345 can be written as

0.81234510 × 10−3

ä Problem with floating point arithmetic: we have to live with
limited precision.

Example: Assume that we have only 5 digits of accuray in the
mantissa and 2 digits for the exponent (excluding sign).

.d1 d2 d3 d4 d5 e1 e2

4-6 – – –

4-6

Try to add 1000.2 = .10002e+03 and 1.07 = .10700e+01:

1000.2 = .1 0 0 0 2 0 4 ; 1.07 = .1 0 7 0 0 0 1

First task: align decimal points. The one with smallest exponent

will be (internally) rewritten so its exponent matches the largest one:

1.07 = 0.000107 × 104

Second task: add mantissas:

0. 1 0 0 0 2
+ 0. 0 0 0 1 0 7
= 0. 1 0 0 1 2 7

4-7 – – –

4-7

Third task:

round result. Result has 6 digits - can use only 5 so we can

ä Chop result: .1 0 0 1 2 ;

ä Round result: .1 0 0 1 3 ;

Fourth task:

Normalize result if needed (not needed here)

result with rounding: .1 0 0 1 3 0 4 ;

-5 Redo the same thing with 7000.2 + 4000.3 or 6999.2 + 4000.3.

4-8 – – –

4-8

Some More Examples

ä Each operation fl(x� y) proceeds in 4 steps:
1. Line up exponents (for addition & subtraction).
2. Compute temporary exact answer.
3. Normalize temporary result.
4. Round to nearest representable number

(round-to-even in case of a tie).

.40015 e+02 .40010 e+02 .41015 e-98

+ .60010 e+02 .50001 e-04 -.41010 e-98

temporary 1.00025 e+02 .4001050001e+02 .00005 e-98

normalize .100025e+03 .400105⊕ e+02 .00050 e-99

round .10002 e+03 .40011 e+02 .00050 e-99

note: round to round to nearest too small:
even ⊕=not all 0’s unnormalized

exactly halfway closer to exponent is
between values upper value at minimum

4-9 – – –

4-9

The IEEE standard

32 bit (Single precision) :

± 8 bits ← 23 bits →

si
gn ︸ ︷︷ ︸

exponent
︸ ︷︷ ︸

mantissa

ä Number is scaled so it is in the form 1.d1d2...d23 × 2e - but
leading one is not represented.

ä e is between -126 and 127.

ä [Here is why: Internally, exponent e is represented in “biased” form: what is

stored is actually c = e + 127 – so the value c of exponent field is between 1

and 254. The values c = 0 and c = 255 are for special cases (0 and∞)]

4-10 – – –

4-10

64 bit (Double precision) :

± 11 bits ← 52 bits →

si
gn ︸ ︷︷ ︸

exponent
︸ ︷︷ ︸

mantissa

ä Bias of 1023 so if e is the actual exponent the content of the
exponent field is c = e+ 1023

ä Largest exponent: 1023; Smallest = -1022.

ä c = 0 and c = 2047 (all ones) are again for 0 and∞

ä Including the hidden bit, mantissa has total of 53 bits (52 bits
represented, one hidden).

ä In single precision, mantissa has total of 24 bits (23 bits repre-
sented, one hidden).

4-11 – – –

4-11

-6 Take the number 1.0 and see what will happen if you add
1/2, 1/4,, 2−i. Do not forget the hidden bit!

Hidden bit (Not represented)
Expon. ↓ ← 52 bits →

e 1 1 0 0 0 0 0 0 0 0 0 0

e 1 0 1 0 0 0 0 0 0 0 0 0

e 1 0 0 1 0 0 0 0 0 0 0 0

.......
e 1 0 0 0 0 0 0 0 0 0 0 1

e 1 0 0 0 0 0 0 0 0 0 0 0

(Note: The ’e’ part has 12 bits and includes the sign)

ä Conclusion

fl(1 + 2−52) 6= 1 but: fl(1 + 2−53) == 1 n+1

4-12 – – –

4-12

Special Values

ä Exponent field = 00000000000 (smallest possible value)
No hidden bit. All bits == 0 means exactly zero.

ä Allow for unnormalized numbers,
leading to gradual underflow.

ä Exponent field = 11111111111 (largest possible value)
Number represented is ”Inf” ”-Inf” or ”NaN”.

4-13 – – –

4-13

