\swarrow_1 Non associativity in the presence of round-off.

Solution: This is done in a class demo and the diary should be posted. Here are the commands.

```
n = 10000;
a = randn(n,1); b = randn(n,1); c = randn(n,1);
t = ((a+b)+c == a+(b+c));
sum(t)
```

Right-hand side in 3rd line returns 1 for each instance when the two numbers are the same.

```
\swarrow 2 Find machine epsilon in matlab.
```

Solution:

for i=0:999

fprintf(1,' i = %d , u = %e \n',i,u)
if (1.0 +u == 1.0) break, end
u = u/2;
end

u = u*2

2 Proof of Lemma: If $|\delta_i| \leq \underline{\mathbf{u}}$ and $n\underline{\mathbf{u}} < 1$ then

$$\Pi_{i=1}^n(1+\delta_i) = 1+ heta_n \hspace{0.2cm} ext{where}\hspace{0.2cm} | heta_n| \leq rac{n \underline{\mathrm{u}}}{1-n \underline{\mathrm{u}}}$$

Solution:

The proof is by induction on \boldsymbol{n} .

1) Basis of induction. When n = 1 then the product reduces to $1 + \delta_i$ and so we can take

 $\theta_n = \delta_n$ and we know that $|\delta_n| \leq \underline{\mathbf{u}}$ from the assumptions and so

$$| heta_n| \leq \underline{\mathrm{u}} \, \leq rac{\underline{\mathrm{u}}}{1-\underline{\mathrm{u}}},$$

as desired.

2) Induction step. Assume now that the result as stated is true for n and consider a product with n + 1 terms: $\prod_{i=1}^{n+1} (1 + \delta_i)$. We can write this as $(1 + \delta_{n+1}) \prod_{i=1}^{n} (1 + \delta_i)$ and from the induction hypothesis we get:

$$\Pi_{i=1}^{n+1}(1+\delta_i) = (1+ heta_n)(1+\delta_{n+1}) = 1+ heta_n+\delta_{n+1}+ heta_n\delta_{n+1}$$

with θ_n satisfying the inequality $\theta_n \leq (n\underline{\mathbf{u}})/(1-n\underline{\mathbf{u}})$. We call θ_{n+1} the quantity $\theta_{n+1} = \theta_n + \delta_{n+1} + \theta_n \delta_{n+1}$, and we have

$$\begin{split} |\theta_{n+1}| &= |\theta_n + \delta_{n+1} + \theta_n \delta_{n+1}| \\ &\leq \frac{n\underline{\mathbf{u}}}{1 - n\underline{\mathbf{u}}} + \underline{\mathbf{u}} + \frac{n\underline{\mathbf{u}}}{1 - n\underline{\mathbf{u}}} \times \underline{\mathbf{u}} = \frac{n\underline{\mathbf{u}} + \underline{\mathbf{u}} \left(1 - n\underline{\mathbf{u}}\right) + n\underline{\mathbf{u}}^2}{1 - n\underline{\mathbf{u}}^2} = \frac{(n+1)\underline{\mathbf{u}}}{1 - n\underline{\mathbf{u}}} \\ &\leq \frac{(n+1)\underline{\mathbf{u}}}{1 - (n+1)\underline{\mathbf{u}}} \end{split}$$

This establishes the result	with \boldsymbol{n} replaced by \boldsymbol{n}	+1 as wanted and com	pletes the proof.

Supplemental notes: Floating Point Arithmetic

In most computing systems, real numbers are represented in two parts: A mantissa and an exponent. If the representation is in the base β then:

$$x=\pm (.d_1d_2\cdots d_m)_etaeta^e$$

.d₁d₂ · · · d_m is a fraction in the base-β representation
 e is an integer - can be negative, positive or zero.
 Generally the form is normalized in that d₁ ≠ 0.

Example: In base 10 (for illustration)

1. 1000.12345 can be written as

$0.100012345_{10} imes 10^4$

2. 0.000812345 can be written as

 $0.812345_{10} imes 10^{-3}$

Problem with floating point arithmetic: we have to live with limited precision.

Example: Assume that we have only 5 digits of accuray in the mantissa and 2 digits for the exponent (excluding sign).

4-6

Try to add 1000.2 = .10002e+03 and 1.07 = .10700e+01: $1000.2 = \boxed{.1 \ 0 \ 0 \ 2 \ 0 \ 4}$; $1.07 = \boxed{.1 \ 0 \ 7 \ 0 \ 0 \ 0 \ 1}$

First task: align decimal points. The one with smallest exponent will be (internally) rewritten so its exponent matches the largest one: $1.07 = 0.000107 \times 10^4$

Second task: add mantissas:

Third task:

round result. Result has 6 digits - can use only 5 so we can

> Chop result: $.1 \ 0 \ 1 \ 2$;

 \blacktriangleright Round result: 1 0 0 1 3;

Fourth task:

Normalize result if needed (not needed here)

result with rounding: 1 0 0 1 3 0 4;

Kedo the same thing with 7000.2 + 4000.3 or 6999.2 + 4000.3.

Some More Examples

- \succ Each operation $fl(x \odot y)$ proceeds in 4 steps:
 - 1. Line up exponents (for addition & subtraction).
 - 2. Compute temporary exact answer.
 - 3. Normalize temporary result.
 - 4. Round to nearest representable number (round-to-even in case of a tie).

	.40015 e+02	.40010 e+02	.41015 e-98		
+	.60010 e+02	.50001 e-04	41010 e-98		
temporary	1.00025 e+02	.4001050001e+02	.00005 e-98		
normalize	.100025e+03	.400105⊕ e+02	.00050 e-99		
round	.10002 e+03	.40011 e+02	.00050 e-99		
note:	round to even	round to nearest \oplus =not all 0's	too small: unnormalized		
	exactly halfway between values	closer to upper value	exponent is at minimum		

The IEEE standard

32 bit (Single precision) :

> Number is scaled so it is in the form $1.d_1d_2...d_{23} \times 2^e$ - but leading one is not represented.

$$\succ e$$
 is between -126 and 127.

For the exponent e is represented in "biased" form: what is stored is actually c = e + 127 – so the value c of exponent field is between 1 and 254. The values c = 0 and c = 255 are for special cases (0 and ∞)]

> Bias of 1023 so if e is the actual exponent the content of the exponent field is c = e + 1023

 \blacktriangleright Largest exponent: 1023; Smallest = -1022.

 $\succ \ c=0$ and c=2047 (all ones) are again for 0 and ∞

Including the hidden bit, mantissa has total of 53 bits (52 bits represented, one hidden).

▶ In single precision, mantissa has total of 24 bits (23 bits represented, one hidden).

Take the number 1.0 and see what will happen if you add $1/2, 1/4, ..., 2^{-i}$. Do not forget the hidden bit!

Hidden bit				(Not represented)								
Expon. $\downarrow \leftarrow$ 52 bits \rightarrow												
e	1	1	0	0	0	0	0	0	0	0	0	0
e	1	0	1	0	0	0	0	0	0	0	0	0
e	1	0	0	1	0	0	0	0	0	0	0	0

е	1	0	0	0	0	0	0	0	0	0	0	1
е	1	0	0	0	0	0	0	0	0	0	0	0

(Note: The 'e' part has 12 bits and includes the sign)

Conclusion

 $fl(1+2^{-52})
eq 1$ but: $fl(1+2^{-53})==1$ n+1

4-12

Special Values

- Allow for unnormalized numbers, leading to gradual underflow.
- Exponent field = 1111111111 (largest possible value) Number represented is "Inf" "-Inf" or "NaN".