
CSci 5304, F’19 Solution keys to some exercises from: Set 2

-1 Unitary matrices preserve the 2-norm.

Solution: The proof takes only one line if we use the result (Ax, y) = (x,AHy):

‖Qx‖22 = (Qx,Qx) = (x,QHQx) = (x, x) = ‖x‖22. �

-3 When do we have equality in Cauchy-Schwarz?

Solution: From the proof of Cauchy-Schwarz it can be seen that we have equality when x = λy,

i.e., when they are colinear.�

-4 Expand (x+ y, x+ y) – What does Cauchy-Schwarz imply?

Solution: You will see that you can derive the triangle inequality from this expansion and the

Cauchy-Schwarz inequality. �.
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-5 Second triangle inequality.

Solution: Start by invoking the triangle inequality to write:

‖x‖ = ‖(x− y) + y‖ ≤ ‖x− y‖+ ‖y‖ → ‖x‖ − ‖y‖ ≤ ‖x− y‖

Next exchange the roles of x and y:

‖y‖ − ‖x‖ ≤ ‖y − x‖ = ‖x− y‖

The two inequalities ‖x‖ − ‖y‖ ≤ ‖x − y‖ and ‖y‖ − ‖x‖ ≤ ‖x − y‖ yield the result

since they imply that

−‖x− y‖ ≤ ‖x‖ − ‖y‖ ≤ ‖x− y‖
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-6 Norms are continuous functions in Rn (or Cn).

Solution: We need to show that we can make ‖y‖ arbitrarily close to ‖x‖ by making y

‘close’ enough to x, where ‘close’ is measured in terms of the infinity norm distance d(x, y) =

‖x− y‖∞. Define u = x− y and write u in the canonical basis as u =
∑n

i=1 δiei. Then:

‖u‖ = ‖
n∑
i=1

δiei‖ ≤
n∑
i=1

|δi| ‖ei‖ ≤ max |δi|
n∑
i=1

‖ei‖

Setting M =
∑n

i=1 ‖ei‖ we get ‖u‖ ≤M max |δi| = M‖x− y‖∞

Let ε be given and take x, y such that ‖x − y‖∞ ≤ ε
M

. Then, by using the second triangle

inequality we obtain:

| ‖x‖ − ‖y‖ | ≤ ‖x− y‖ ≤M max δi ≤M
ε

M
= ε.

This means that we can make ‖y‖ arbitrarily close to ‖x‖ by making y close enough to x in

the sense of the defined metric. Therefore ‖.‖ is continuous.
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-7 In Rn (or Cn) all norms are equivalent.

Solution: We will do it for φ1 = ‖.‖ some norm and φ2 = ‖.‖∞ [and one can see that all

other cases will follow from this one].

1. Need to show that for some α we have ‖x‖ ≤ α‖x‖∞. Express x in the canonical basis of

Rn as x =
∑
xiei [look up canonical basis ei from your csci2033 class.] Then

‖x‖ = ‖
∑

xiei‖ ≤
∑
|xi|‖ei‖ ≤ max ‖xi‖

∑
‖ei‖ ≤ ‖x‖∞α

where α =
∑
‖ei‖.

2. We need to show that there is a β such that ‖x‖ ≥ β‖x‖∞. Assume x 6= 0 and consider

u = x/‖x‖∞. Note that u has infinity norm equal to one. Therefore it belongs to the closed

and bounded set S∞ = {v|‖v‖∞ = 1}. Since norms are continuous, the minimum of the

norm ‖u‖ for all u′s in S∞is reached, i.e., there is a u0 ∈ S∞ such that

min
u∈ S∞

‖u‖ = ‖u0‖.
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Let us call β this minimum value, i.e., ‖u0‖ = β. Note in passing that β cannot be equal to

zero otherwise u0 = 0 which would contradict the fact that u0 belongs to S∞ [all vectors in S∞

have infinity norm equal to one.] The result follows because u = x/‖x‖∞, and so, remembering

that u = x/‖x‖∞, we obtain∥∥∥∥ x

‖x‖∞

∥∥∥∥ ≥ β → ‖x‖ ≥ β‖x‖∞
This completes the proof

-14 Show that ρ(A) ≤ ‖A‖ for any matrix norm.

Solution: Let λ be the largest (in modulus) eigenvalue of A with associated eigenvector u.

Then

Au = λu→
‖Au‖
‖u‖

= |λ| = ρ(A)

This implies that

ρ(A) ≤ max
x 6=0

‖Ax‖
‖x‖

= ‖A‖
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-16 The eigenvalues of AHA and AAH are real nonnegative.

Solution: Let us show it for AHA [the other case is similar] If λ, u is an eigenpair of AHA

then (AHA)u = λu. Take inner products with u on both sides. Then:

λ(u, u) = ((AHA)u, u) = (Au,Au) = ‖Au‖2

Therefore, λ = ‖Au‖2/‖u‖2 which is a real nonnegative number.

[Note: 1) Observe how simple the proof is for such an important fact. It is based on the result

(Ax, y) = (x,AHy). 2) The singular values of A are the square roots of the eigenvalues of

AHA ifm ≥ n or those of the eigenvalues ofAAH ifm < n. So there are always min(m,n)

singular values. This is really just a preliminary definition as we need to refer to singular values

often – but we will see singular values and the singular value decomposition in great detail later.]
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-17 Prove that when A = uvT then ‖A‖2 = ‖u‖2‖v‖2.

Solution: Done in class. We start by dealing the eigenvalues of an arbitrary matrix of the form

A = uvT where both u and v are in Rn. From Ax = λx we get:

uvTx = λx→ (vTx)u = λx

Notice that we did this because vTx is a scalar. We have 2 cases.

Case 1: vTx = 0. In this case it is clear that the equationAx = λx is satisfied with λ = 0. So

any vector that is orthogonal to v is an eigenvector of A associated with the eigenvalue λ = 0.

(It can be shown that the eigenvalue 0 is of multiplicity n− 1).

Case 2: vTx 6= 0. In this case it is clear that the equationAx = λx is satisfied with λ = vTu

and x = u. So u is an eigenvector of A associated with the eigenvalue vTx.

In summary the matrix uvT has only two eigenvalues: 0, and vTu.

Going back to the original question, we consider now A = uvT and we are interested in the
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2-norm of A. We have

‖A‖22 = ρ(ATA) = ρ(vuTuvT ) = ‖u‖22ρ(vv
T ) = ‖u‖22‖v‖

2
2.

The last relation comes from what was done above to determine the eigenvalues of vvT .
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