CSci 5304, F’19 Solution keys to some exercises from: Set 2

#11| Unitary matrices preserve the 2-norm.

Solution: The proof takes only one line if we use the result (Az,y) = (z, AHy):

1Qz||? = (Qz, Qx) = (z, QP Qx) = (x,z) = ||=|2. O

#13| When do we have equality in Cauchy-Schwarz?

Solution: From the proof of Cauchy-Schwarz it can be seen that we have equality when @ = Ay,

i.e., when they are colinear.[]

“4| Expand (x + y, x + y) — What does Cauchy-Schwarz imply?

Solution: You will see that you can derive the triangle inequality from this expansion and the

Cauchy-Schwarz inequality. [l.
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#5| Second triangle inequality.

Solution: Start by invoking the triangle inequality to write:
lzll = [[(z —y) +yll < llz =yl + llyll = llzll = [yl < [z -yl
Next exchange the roles of @ and y:
[yl = llzll < lly — || = [z -yl

The two inequalities ||z|| — [|y|| < ||z — y|| and ||ly|| — ||z|| < ||z — y]| yield the result
since they imply that
—llz —yll < llzll = llyll < llz -yl
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#6| Norms are continuous functions in R™ (or C™).

Solution: We need to show that we can make ||y|| arbitrarily close to ||x|| by making y
‘close” enough to x, where ‘close’ is measured in terms of the infinity norm distance d(x,y) =

|z — Yl||oo- Define u = & — y and write w in the canonical basis as uw = Y . ; d;e;. Then:

lull = 11)_ dieill < > 18] llesll < max |di] Y [lei
=1 =1 =1

Sctting M = Y0, [lesl| we get [[[ull < M max 1] = Mllz — yllos

Let € be given and take x,y such that ||z — y|lcc < 77 Then, by using the second triangle

inequality we obtain:
€
Hizll =iyl < lle — yll < Mmaxd; < M- = e.

This means that we can make ||y|| arbitrarily close to ||«|| by making y close enough to @ in

the sense of the defined metric. Therefore ||.|| is continuous.
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“7| In R™ (or C™) all norms are equivalent.

Solution: We will do it for ¢p; = ||.|| some norm and ¢2 = ||.||c [and one can see that all

other cases will follow from this one].

1. Need to show that for some a we have ||x|| < a|®||co. Express @ in the canonical basis of

R™ as & = > x;e; [look up canonical basis e; from your csci2033 class.] Then

lll = 1| ) _wieill <) |zillleill < max |zl Y lleill < llzllwe
where a = ) ||e;]].

2. We need to show that there is a 3 such that ||x|| > B||®||co. Assume & # 0 and consider
u = x/||x||co. Note that w has infinity norm equal to one. Therefore it belongs to the closed
and bounded set S = {v|||v]||loo = 1}. Since norms are continuous, the minimum of the

norm ||ul| for all u's in Suois reached, i.e., there is a ug € S such that

Jnin luf] = [[uoll
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Let us call B this minimum value, i.e., ||ug|| = B. Note in passing that 3 cannot be equal to
zero otherwise ug = 0 which would contradict the fact that wg belongs to So |all vectors in S
have infinity norm equal to one.] The result follows because u = @ /||x|| 0o, and so, remembering

that u = x/||®|| o0, we obtain

‘ ‘ ]

H > 8 = ||l > Bzl
e

This completes the proof

#14| Show that p(A) < ||A|| for any matrix norm.

Solution: Let A be the largest (in modulus) eigenvalue of A with associated eigenvector u.

Then
_ ]
Au = Au — = |[A| = p(A)
]|
This implies that
| Az|
p(A) < max 2l — | 4
220 ||z|]
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#116| The eigenvalues of A” A and AAH are real nonnegative.

Solution: Let us show it for A® A [the other case is similar] If X, is an eigenpair of A¥ A

then (A® A)u = Au. Take inner products with w on both sides. Then:

Au,u) = (A" A)u, u) = (Au, Au) = ||Aul|?

Therefore, A = || Aw||?/||u||? which is a real nonnegative number.

[Note: 1) Observe how simple the proof is for such an important fact. It is based on the result
(Ax,y) = (x, A®y). 2) The singular values of A are the square roots of the eigenvalues of
AH A if m > n or those of the eigenvalues of AAH if m < m. So there are always min(m, n)
singular values. This is really just a preliminary definition as we need to refer to singular values

often — but we will see singular values and the singular value decomposition in great detail later.|
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#117| Prove that when A = wwv? then ||Al|2 = ||ul|2]|v]|2.

Solution: Done in class. We start by dealing the eigenvalues of an arbitrary matrix of the form

A = wvT where both w and v are in R®. From Az = Az we get:

v’z = Axr — (viz)u = Az

T

Notice that we did this because v* @ is a scalar. We have 2 cases.

Case 1: vTa = 0. In this case it is clear that the equation Ax = Az is satisfied with A = 0. So
any vector that is orthogonal to v is an eigenvector of A associated with the eigenvalue A = 0.

(It can be shown that the eigenvalue 0 is of multiplicity n — 1).

Case 2: vTx # 0. In this case it is clear that the equation Az = Az is satisfied with A = vTu

and £ = w. So w is an eigenvector of A associated with the eigenvalue v* x.

In summary the matrix uv” has only two eigenvalues: 0, and vTu.

Going back to the original question, we consider now A = uwv? and we are interested in the
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2-norm of A. We have
|A]l5 = p(ATA) = p(vu"uv”) = |lull5p(ve”) = |lu|l3]v]]3.

The last relation comes from what was done above to determine the eigenvalues of vv?.
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