2 Show that $\overline{X} = X(I - \frac{1}{n}ee^{T})$ (here e = vector of all ones). What does the projector $(I - \frac{1}{n}ee^{T})$ do?

Solution: Each column of \overline{X} is $\overline{x} = x - \mu$ so that $\overline{X} = X - \mu e^T$, where μ is the sample mean. But we have $\mu = \frac{1}{n} \sum x_i = \frac{1}{n} X e$ and so,

$$\bar{X} = X - \frac{1}{n}Xee^{T} = X[I - \frac{1}{n}ee^{T}]$$

The matrix $(I - \frac{1}{n}ee^{T})$ represents a projector that centers the data so the mean is zero.

 \swarrow_3 Show that solution V also minimizes 'reconstruction error' ...

Solution: The main property that is exploited in the proof is the fact that Tr(ABC) =Tr(BCA) (when dimensions are compatible). First we note that $\sum_i ||\bar{x}_i - VV^T \bar{x}_i||^2 =$ $||(I - VV^T)X_F^2$. We will call P the pojector $P = VV^T$. Then:

$$\begin{split} \| (I - VV^T) X \cdot F^2 * &= \operatorname{Tr} (I - P) X X^T (I - P) \\ &= \operatorname{Tr} (X X^T - P X X^T) (I - P) \\ &= \operatorname{Tr} (X X^T) - \operatorname{Tr} (P X X^T) - \operatorname{Tr} (X X^T P) + \operatorname{Tr} (P X X^T P) \\ &= \operatorname{Tr} (X X^T) - \operatorname{Tr} (P X X^T) - \operatorname{Tr} (X X^T P) + \operatorname{Tr} (X X^T P^2) \\ &= \operatorname{Tr} (X X^T) - \operatorname{Tr} (P X X^T) - \operatorname{Tr} (X X^T P) + \operatorname{Tr} (X X^T P) \\ &= \operatorname{Tr} (X X^T) - \operatorname{Tr} (P X X^T) \\ &= \operatorname{Tr} (X X^T) - \operatorname{Tr} (V V^T X X^T) \\ &= \operatorname{Tr} (X X^T) - \operatorname{Tr} (V V^T X X^T V) \end{split}$$

The first term is a constant, therefore the minimum is reached when the maxiumn of the second term is reached.