▲12 Complexity? [number of multiplications and additions]

Solution: Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$. Then the product AB requires 2mnp operations

(there are mp entries in all and each of them requires 2n operations).

15 Show that $A \in \mathbb{R}^{n \times n}$ is of rank one iff [if and only if] there exist two nonzero vectors \boldsymbol{u} and \boldsymbol{v} such that

$$A = uv^T$$
.

What are the eigenvalues and eigenvectors of \boldsymbol{A} ?

Solution: When both u and v are nonzero vectors then the rank of a matrix of the matrix $A = uv^T$ is one. The range of A is the set of all vectors of the form

$$y = Ax = uv^T x = (v^T x)u$$

since \boldsymbol{u} is a nonzero vector, and not all vectors $\boldsymbol{v}^T \boldsymbol{x}$ are zero (because $\boldsymbol{v} \neq \boldsymbol{0}$) then this space is of dimension 1.

Eigenvalues /vectors

Write $Ax = \lambda x$ then notice that this means $(v^T x)u = \lambda x$ so either $v^T x = 0$ and $\lambda = 0$ or x = u and $\lambda = v^T u$. Two eigenvalues: 0 and $v^T x$...

$\bigstar 16$ Is it true that

$$\operatorname{rank}(A) = \operatorname{rank}(\bar{A}) = \operatorname{rank}(A^T) = \operatorname{rank}(A^H)$$
?

Solution:

The answer is yes and it follows from the fact that the ranks of A and A^T are the same and the ranks of A and \bar{A} are also the same.

It is known that $rank(A) = rank(A^T)$. We now compare the ranks of A and \overline{A} (everything is considered to be complex).

The important property that is used is that if a set of vectors is linearly independent then so is its conjugate. [convince yourself of this by looking at material from 2033]. If A has rank r and for example its first r columns are the basis of the range, the the same r columns of \overline{A} are also linearly independent. So $rank(\overline{A}) \geq rank(A)$. Now you can use a similar argument to show that $rank(A) \geq rank(\overline{A})$. Therefore the ranks are the same. **\swarrow** 21 Eigenvalues of **A** and **B** are the same. What about eigenvectors?

Solution: If $Au = \lambda u$ then $XBX^{-1}u = \lambda u \to B(X^{-1}u) = \lambda(Xu) \to \lambda$ is an eigenvalue of B with eigenvector Xu (note the Xu cannot be equal to zero because $u \neq 0$ and X is nonsingular)