CSci 5271 Introduction to Computer Security Usability and Voting combined slides

Stephen McCamant University of Minnesota, Computer Science & Engineering

Outline

Tor experiences and challenges (cont'd) Usability and security Announcements intermission Usable security example areas Elections and their security System security of electronic voting End-to-end verification

Intersection attacks

- Suppose you use Tor to update a pseudonymous blog, reveal you live in Minneapolis
- Comcast can tell who in the city was sending to Tor at the moment you post an entry
 - \blacksquare Anonymity set of 1000 \rightarrow reasonable protection
- But if you keep posting, adversary can keep narrowing down the set

Exit sniffing

- Easy mistake to make: log in to an HTTP web site over Tor
- A malicious exit node could now steal your password
- Another reason to always use HTTPS for logins

Browser bundle JS attack

- Tor's Browser Bundle disables many features try to stop tracking
- But, JavaScript defaults to on
 - Usability for non-expert users
 - Fingerprinting via NoScript settings
- Was incompatible with Firefox auto-updating
- Many Tor users de-anonymized in August 2013 by JS vulnerability patched in June

Outline

Tor experiences and challenges (cont'd) Usability and security

- Announcements intermission
- Usable security example areas
- Elections and their security
- System security of electronic voting
- End-to-end verification

Users are not 'ideal components' Frustrates engineers: cannot give users instructions like a computer Closest approximation: military Unrealistic expectations are bad for security

Don't blame users

- "User error" can be the end of a discussion
- This is a poor excuse
- Almost any "user error" could be avoidable with better systems and procedures

Users as rational

- Economic perspective: users have goals and pursue them
 - They're just not necessarily aligned with security
- Ignoring a security practice can be rational if the rewards is greater than the risk

Perspectives from psychology Users • Users become habituated to experiences and processes • Learn "skill" of clicking OK in dialog boxes • Heuristic factors affect perception of risk • Level of control, salience of examples • Social pressures can override security rules • "Social engineering" attacks • Social engineering" attacks • "Social engineering" attacks • Users have • Exagge • Users have • Exagge • Exagge • If you was: be available • The security rules • "Social engineering" attacks • "Social engineering" attacks

User attention is a resource

- Users have limited attention to devote to security Exaggeration: treat as fixed
- If you waste attention on unimportant things, it won't be available when you need it
- Fable of the boy who cried wolf

Research: ecological validity

- User behavior with respect to security is hard to study
- Experimental settings are not like real situations
- Subjects often:
 - Have little really at stake
 - Expect experimenters will protect them
 - Do what seems socially acceptable
 - Do what they think the experimenters want

Research: deception and ethics

- Have to be very careful about ethics of experiments with human subjects
 - Enforced by institutional review systems
- When is it acceptable to deceive subjects?
 - Many security problems naturally include deception

Outline

Tor experiences and challenges (cont'd) Usability and security

Announcements intermission

Usable security example areas

- Elections and their security
- System security of electronic voting
- End-to-end verification

Tor technique question

Officially the name of the Tor network is not an acronym, but the "or" part of the name originated from this technique it uses:

- A. onion routing
- B. oatmeal reciprocity
- C. one-time resilience
- D. oilseed relaying
- E. oblivious ratcheting

- Bitcoin and electronic cash will not be part of this semester's course
- Still accepting late submissions of project progress reports
- Exercise set 5 release delayed, available now

Upcoming schedule

- 🖲 Wed. 12/4: 4 project presentations
- Fri. 12/6: Exercise set 5 due (extended from Wed.)
- Mon. 12/9: 4 project presentations
- Wed. 12/11: 4 project presentations, course evaluations, final reports due
- 🖲 Sat. 12/14: Final exam 10:30am

Project presentations

Schedule on Canvas discussion board

- 15 minute slots, prepare 10 minute presentation
 Extra time for audience Q&A, switching logistics
- Prefer to have just one person present
- Safest: your own laptop with HDMI port
 - This room also has VGA and USB-C, come early to test
 My laptop or remote presentation possible with prior discussion

Outline

Tor experiences and challenges (cont'd) Usability and security Announcements intermission Usable security example areas Elections and their security System security of electronic voting End-to-end verification

Email encryption

- Technology became available with PGP in the early 90s
- Classic depressing study: "Why Johnny can't encrypt: a usability evaluation of PGP 5.0" (USENIX Security 1999)
- Still an open "challenge problem"
- Also some other non-Ul difficulties: adoption, govt. policy

Phishing

- Attacker sends email appearing to come from an institution you trust
- Links to web site where you type your password, etc.
- Spear phishing: individually targeted, can be much more effective

Permissions manifest

- Android approach: present listed of requested permissions at install time
- Can be hard question to answer hypothetically
 Users may have hard time understanding implications
- User choices seem to put low value on privacy

Time-of-use checks

- iOS approach: for narrower set of permissions, ask on each use
- Proper context makes decisions clearer
- But, have to avoid asking about common things
- iOS app store is also more closely curated

Outline

Tor experiences and challenges (cont'd) Usability and security Announcements intermission Usable security example areas Elections and their security System security of electronic voting End-to-end verification

Elections as a challenge problem

- Elections require a tricky balance of openness and secrecy
- Important to society as a whole
 - But not a big market
- Computer security experts react to proposals that seem insecure

History of US election mechanisms

- For first century or so, no secrecy
 Secret ballot adopted in late 1800s
- Punch card ballots allowed machine counting
 - Common by 1960s, as with computers
 - Still common in 2000, decline thereafter
- How to add more technology and still have high security?

Election integrity Tabulation should reflect actual votes No valid votes removed No fake votes inserted Best: attacker can't change votes Easier: attacker can't change votes without getting caught

Secrecy, vote buying and coercion

- Alice's vote can't be matched with her name (unlinkable anonymity)
- Alice can't prove to Bob who she voted for (receipt-free)
- Best we can do to discourage:
 - Bob pays Alice \$50 for voting for Charlie
 - Bob fires Alice if she doesn't vote for Charlie

Politics and elections

- In a stable democracy, most candidates will be "pro-election"
- But, details differ based on political realities
- "Voting should be easy and convenient"
 Especially for people likely to vote for me
 "No one should vote who isn't eligible"
 - Especially if they'd vote for my opponent

Errors and Florida

🖲 Detectable mistakes:

- Overvote: multiple votes in one race
- Undervote: no vote in a race, also often intentional
- Undetectable mistakes: vote for wrong candidate
- 2000 presidential election in Florida illustrated all these, "wake-up call"

Precinct-count optical scan

- Good current paper system, used here in MN
- 🖲 Voter fills in bubbles with pen
- Ballot scanned in voter's presence Can reject on overvote
- Paper ballot retained for auditing

Vote by mail

By mail universal in Oregon and Washington Many other states have lenient absentee systems Some people are legitimately absent Security perspective: makes buying/coercion easy

Doesn't appear to currently be a big problem

Vote by web?

- 🖲 An obvious next step
- But, further multiplies the threats
- No widespread use in US yet
- Unusual adversarial test in D.C. thoroughly compromised by U. Michigan team

DRE (touchscreen) voting

- "Direct-recording electronic": basically just a computer that presents and counts votes
 In US, touchscreen is predominant interface
 Cheaper machines may just have buttons
- Simple, but centralizes trust in the machine

Adding an audit trail

- 🖲 VVPAT: voter-verified paper audit trail
- DRE machine prints a paper receipt that the voter looks at
- Goal is to get the independence and verifiability of a paper marking system

Outline

Tor experiences and challenges (cont'd)

Usability and security

Announcements intermission

Usable security example areas

Elections and their security

System security of electronic voting

End-to-end verification

Trusted client problem Everything the voter knows is mediated by the machine (For Internet or DRE without VVPAT) Must trust machine to present and record accurately A lot can go wrong Especially if the machine has a whole desktop OS inside Or a bunch of poorly audited custom code

Should we use DRE at all?

One answer: no, that's a bad design

More pragmatic: maybe we can make this work

- DREs have advantages in cost, disability access
- If we implemented them well, they should be OK
- Challenge: evaluating them in advance

US equipment market

- Voting machines are low volume, pretty expensive
- But jurisdictions are cost-conscious
- Makers are mostly small companies
 One was temporarily owned by the larger Diebold
- Big market pressures: regulations, ease of administration

Security ecosystem

Voting fraud appears to be very rare

- Few elections worth stealing
- Important ones are watched closely
- Stiff penalties deter in-US attackers

Downside: No feedback from real attacks

Main mechanism is certification, with its limitations

Diebold case study

- Major manufacturer in early 2000s
 - During a post-2000 purchasing boom
 Since sold and renamed
- Thoroughly targeted by independent researchers
 Impolitic statement, blood in the water
- Later state-authorized audits found comprehensive

problems

Your reading: from California

Outline

Tor experiences and challenges (cont'd)

Usability and security

Announcements intermission

Usable security example areas

Elections and their security

System security of electronic voting

End-to-end verification

End-to-end integrity and verification

Tabulation cannot be 100% public
 But how can we still have confidence in it?
 Cryptography to the rescue, maybe
 Techniques from privacy systems, others
 Adoption requires to be very usable

Commitment to values

Two phases: commit, later open

 Similar to one use of envelopes

 Binding property: can only commit to a single value
 Hiding property: value not revealed until opened

Randomized auditing

- How can I prove what's in the envelope without opening it?
- n envelopes, you pick one and open the rest
 Chance 1/n of successful cheating
- Better protection with repetition

Election mix-nets

Independent election authorities similar to remailers

- Multi-encrypt ballot, each authority shuffles and decrypts
- Extra twist: prove no ballots added or removed, without revealing permutation
 - Instance of "zero-knowledge proof"
- Privacy preserved as long as at least one authority is honest

Fun tricks with paper: visual crypto

- Want to avoid trusted client, but voters can't do computations by hand
- Analogues to crypto primitives using physical objects
- One-time pad using transparencies:

Scantegrity II

- Designed as end-to-end add-on to optical scan system
- Fun with paper 2: invisible ink
- Single trusted shuffle
 Checked by random audits of commitments