CSci 5271 Introduction to Computer Security Middlebox, malware, anonymity combined slides

Stephen McCamant University of Minnesota, Computer Science & Engineering

Outline

Intrusion detection systems Malware and the network Announcements intermission Denial of service and the network Anonymous communications techniques Tor basics Tor experiences and challenges

Basic idea: detect attacks

- The worst attacks are the ones you don't even know about
- Best case: stop before damage occurs Marketed as "prevention"
- 🖲 Still good: prompt response
- Challenge: what is an attack?

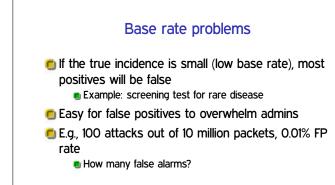
Network and host-based IDSes

- Network IDS: watch packets similar to firewall
 But don't know what's bad until you see it
 More often implemented offline
- Host-based IDS: look for compromised process or user from within machine

Signature matching

- Signature is a pattern that matches known bad behavior
- Typically human-curated to ensure specificity
- 🦲 See also: anti-virus scanners

Anomaly detection


- Learn pattern of normal behavior
- "Not normal" is a sign of a potential attack
- Has possibility of finding novel attacks
- Performance depends on normal behavior too

Recall: FPs and FNs

- False positive: detector goes off without real attack
 False negative: attack happens without detection
- Any detector design is a tradeoff between these (ROC curve)

Signature and anomaly weaknesses

- Signatures
 Won't exist for novel attacks
 Often easy to attack around
- Anomaly detection
 - Hard to avoid false positives
 - Adversary can train over time

Adversarial challenges

- FP/FN statistics based on a fixed set of attacks
- But attackers won't keep using techniques that are detected
- Instead, will look for:
 - Existing attacks that are not detected
 - Minimal changes to attacks
 - Truly novel attacks

Wagner and Soto mimicry attack

Host-based IDS based on sequence of syscalls

Compute $A \cap M$, where:

- A models allowed sequences
- $\blacksquare \ensuremath{\mathcal{M}}$ models sequences achieving attacker's goals

Further techniques required:

- Many syscalls made into NOPs
- Replacement subsequences with similar effect

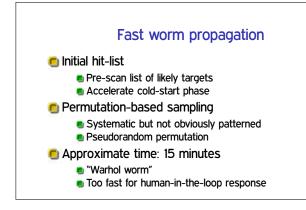
Outline

Intrusion detection systems Malware and the network Announcements intermission Denial of service and the network Anonymous communications techniques Tor basics Tor experiences and challenges

Malicious software

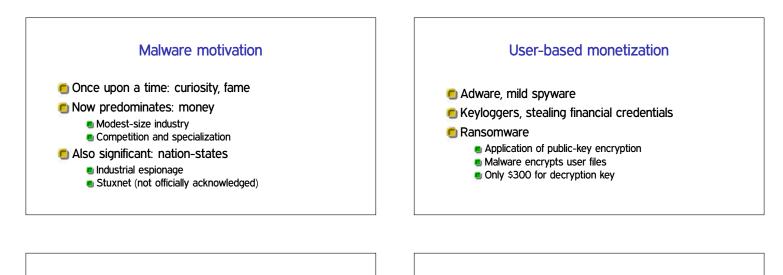
- Shortened to Mal... ware
- Software whose inherent goal is malicious Not just used for bad purposes
- Strong adversary
- 🖲 High visibility
- Many types

Trojan (horse)


Looks benign, has secret malicious functionality
 Key technique: fool users into installing/running
 Concern dates back to 1970s, MLS

(Computer) viruses

- Attaches itself to other software
- Propagates when that program runs
- 🗐 Once upon a time: floppy disks
- More modern: macro viruses
- Have declined in relative importance


Worms

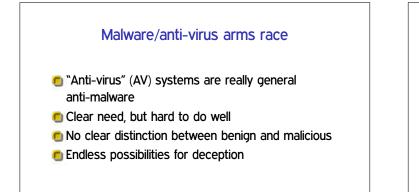
- Completely automatic self-propagation
- Requires remote security holes
- 🖲 Classic example: 1988 Morris worm
- 🖲 "Golden age" in early 2000s
- Internet-level threat seems to have declined

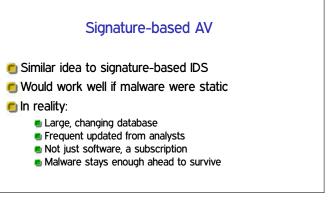
Getting underneath

- Lower-level/higher-privilege code can deceive normal code
- Rootkit: hide malware by changing kernel behavior
- MBR virus: take control early in boot
- Blue-pill attack: malware is a VMM running your system

Bots and botnets

Bot: program under control of remote attacker


Botnet: large group of bot-infected computers with common "master"


Command & control network protocol

- Once upon a time: IRC
- Now more likely custom and obfuscated
- $\blacksquare \textbf{Centralized} \rightarrow \textbf{peer-to-peer}$
- Gradually learning crypto and protocol lessons

Bot monetization

- 🖲 Click (ad) fraud
- Distributed DoS (next section)
- 🖲 Bitcoin mining
- Pay-per-install (subcontracting)
- 🖲 Spam sending

Emulation and AV

Simple idea: run sample, see if it does something evil

- Obvious limitation: how long do you wait?
- Simple version can be applied online
- More sophisticated emulators/VMs used in backend analysis

Polymorphism

Attacker makes many variants of starting malware

- Different code sequences, same behavior
- One estimate: 30 million samples observed in 2012
- But could create more if needed

Packing

- Sounds like compression, but real goal is obfuscation
- Static code creates real code on the fly
- Or, obfuscated bytecode interpreter
- Outsourced to independent "protection" tools

Fake anti-virus

Major monentization strategy recently
 Your system is infected, pay \$19.95 for cleanup tool
 For user, not fundamentally distinguishable from real AV

Outline

Intrusion detection systems

Malware and the network

Announcements intermission

Denial of service and the network

Anonymous communications techniques

Tor basics

Tor experiences and challenges

Tunneling question

A "captive portal" on a WiFi network directs all HTTP traffic to a login web server. Which kind of tunneling might slowly circumvent this?

- A. DNS over HTTPS
- B. UDP over TCP
- C. SOCKS over SSH
- D. IP over DNS
- E. HTTPS over HTTP

Upcoming important dates

Exercise set 4 due tonight

Hands-on assignment 2 due Friday night

Last project progress reports due next Wednesday 11/27

Include a sample of report formatting

MS Word, LaTeX, Overleaf options

Spring special topics course

- CSci 5980/8980, Manual and Automated Binary Reverse Engineering
- Wouldn't HA1 have been more fun if you didn't get the source code?
- Studying disassembled code by hand, and with open-source and research tools
- Only prerequisite is CSci 2021 (or similar)
- 🖲 5271-like project

Outline

Intrusion detection systems Malware and the network Announcements intermission Denial of service and the network Anonymous communications techniques Tor basics Tor experiences and challenges

DoS versus other vulnerabilities

- Effect: normal operations merely become impossible
- Software example: crash as opposed to code injection
- Less power that complete compromise, but practical severity can vary widely
 - Airplane control DoS, etc.

When is it DoS?

- Very common for users to affect others' performance
- E Focus is on unexpected and unintended effects
- Unexpected channel or magnitude

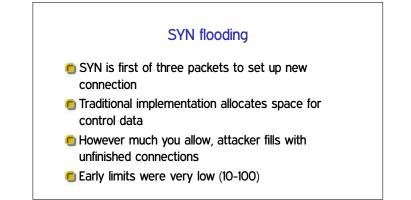
Algorithmic complexity attacks

- Can an adversary make your algorithm have worst-case behavior?
- $\bigcirc O(n^2)$ quicksort
- Hash table with all entries in one bucket
- Exponential backtracking in regex matching

XML entity expansion

```
5 XML entities (c.f. HTML &lt) are like C macros
```

```
#define B (A+A+A+A+A)
#define C (B+B+B+B+B)
#define D (C+C+C+C+C)
#define E (D+D+D+D+D)
#define F (E+E+E+E+E)
```


Compression DoS

- Some formats allow very high compression ratios
 Simple attack: compress very large input
- More powerful: nested archives
- Also possible: "zip file quine" decompresses to itself

DoS against network services Common example: keep legitimate users from viewing a web site Easy case: pre-forked server supports 100 simultaneous connections Fill them with very very slow downloads

Tiny bit of queueing theory

- Mathematical theory of waiting in line
- Simple case: random arrival, sequential fixed-time service
 - M/D/1
- If arrival rate > service rate, expected queue length grows without bound

SYN cookies

- Change server behavior to stateless approach
- Embed small amount of needed information in fields that will be echoed in third packet
 MAC-like construction
- Other disadvantages, so usual implementations used only under attack

DoS against network links

- Try to use all available bandwidth, crowd out real traffic
- Brute force but still potentially effective
- Baseline attacker power measured by packet sending rate

Traffic multipliers

- Third party networks (not attacker or victim)
- One input packet causes n output packets
- Commonly, victim's address is forged source, multiply replies
- Misuse of debugging features

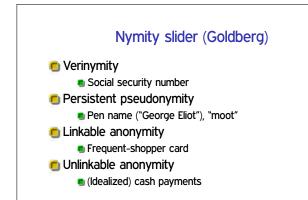
"Smurf" broadcast ping

ICMP echo request with forged source

- Sent to a network broadcast address
- Every recipient sends reply
- Now mostly fixed by disabling this feature

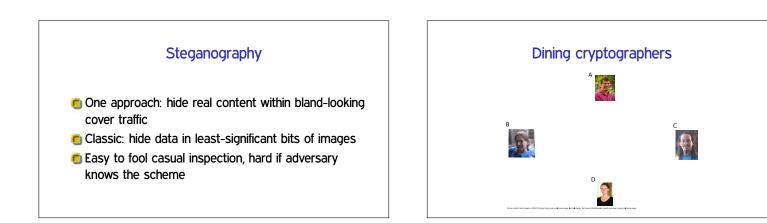
Distributed DoS

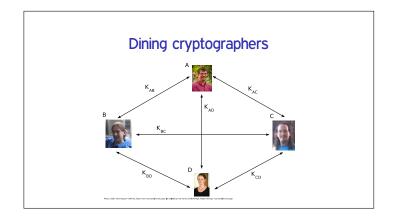
- Many attacker machines, one victim
- 🖲 Easy if you own a botnet
- Impractical to stop bots one-by-one
- May prefer legitimate-looking traffic over weird attacks
 - Main consideration is difficulty to filter

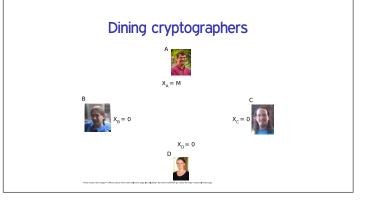

Outline

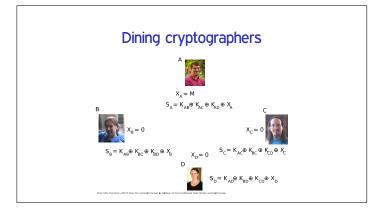
Intrusion detection systems Malware and the network Announcements intermission Denial of service and the network Anonymous communications techniques Tor basics

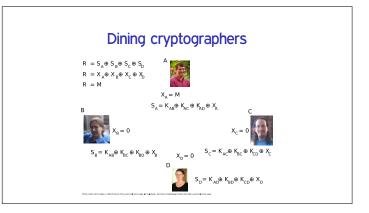
Tor experiences and challenges


Traffic analysis


- What can you learn from encrypted data? A lot
- Content size, timing
- Who's talking to who
 - ightarrow countermeasure: anonymity




Nymity ratchet?


- It's easy to add names on top of an anonymous protocol
- The opposite direction is harder
- But, we're stuck with the Internet as is
- So, add anonymity to conceal underlying identities

DC-net challenges

- Quadratic key setups and message exchanges per round
- 🖲 Scheduling who talks when
- 🖲 One traitor can anonymously sabotage
- Improvements subject of ongoing research

Mixing/shuffling

- Computer analogue of shaking a ballot box, etc.
- Reorder encrypted messages by a random permutation
- Building block in larger protocols
- Distributed and verifiable variants possible as well

Anonymous remailers

- Anonymizing intermediaries for email First cuts had single points of failure
- Mix and forward messages after receiving a sufficiently-large batch
- Chain together mixes with multiple layers of encryption
- Eancy systems didn't get critical mass of users

Outline

Intrusion detection systems Malware and the network Announcements intermission Denial of service and the network Anonymous communications techniques **Tor basics** Tor experiences and challenges

Tor: an overlay network

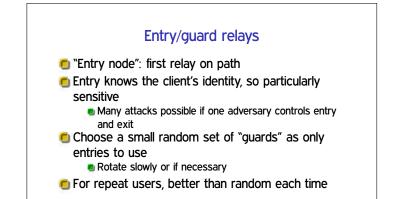
- Tor (originally from "the onion router") https://www.torproject.org/
- An anonymous network built on top of the non-anonymous Internet
- Designed to support a wide variety of anonymity use cases

Low-latency TCP applications

- Tor works by proxying TCP streams

 (And DNS lookups)

 Focuses on achieving interactive latency


 WWW, but potentially also chat, SSH, etc.
 - Anonymity tradeoffs compared to remailers

Tor Onion routing

- Stream from sender to D forwarded via A, B, and C One Tor circuit made of four TCP hops
- **Encrypt packets (512-byte "cells")** as $E_A(B, E_B(C, E_C(D, P)))$
- TLS-like hybrid encryption with "telescoping" path setup

Client perspective

- Install Tor client running in background
- Configure browser to use Tor as proxy
- Or complete Tor+Proxy+Browser bundle
- Browse web as normal, but a lot slower
 - Also, sometimes google.com is in Swedish

Exit relays

- Forwards traffic to/from non-Tor destination
- Focal point for anti-abuse policies
 - E.g., no exits will forward for port 25 (email sending)
- Can see plaintext traffic, so danger of sniffing, MITM, etc.

Centralized directory

How to find relays in the first place?

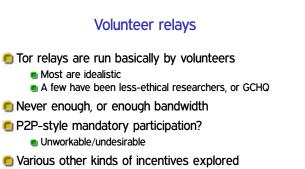
- Straightforward current approach: central directory servers
- Relay information includes bandwidth, exit polices, public keys, etc.
- Replicated, but potential bottleneck for scalability and blocking

Outline

Intrusion detection systems Malware and the network Announcements intermission Denial of service and the network Anonymous communications techniques Tor basics Tor experiences and challenges

Anonymity loves company

Diverse user pool needed for anonymity to be meaningful


Hypothetical Department of Defense Anonymity Network

Tor aims to be helpful to a broad range of (sympathetic sounding) potential users

Who (arguably) needs Tor?

- Consumers concerned about web tracking
- Businesses doing research on the competition
- Citizens of countries with Internet censorship
- Reporters protecting their sources
- Law enforcement investigating targets

Increased latency from long paths
 Bandwidth limited by relays
 Recently 1-2 sec for 50KB, 3-7 sec for 1MB
 Historically worse for many periods

 Flooding (guessed botnet) fall 2013

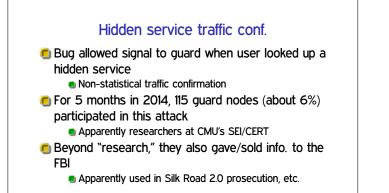
Anti-censorship

- As a web proxy, Tor is useful for getting around blocking
- Unless Tor itself is blocked, as it often is
- Bridges are special less-public entry points
- Also, protocol obfuscation arms race (uneven)

Intersection attacks

Suppose you use Tor to update a pseudonymous blog, reveal you live in Minneapolis

- Comcast can tell who in the city was sending to Tor at the moment you post an entry ■ Anonymity set of 1000 → reasonable protection
- But if you keep posting, adversary can keep narrowing down the set


Exit sniffing

- Easy mistake to make: log in to an HTTP web site over Tor
- A malicious exit node could now steal your password
- Another reason to always use HTTPS for logins

Traffic confirmation attacks

- If the same entity controls both guard and exit on a circuit, many attacks can link the two connections
 "Traffic confirmation attack"
 - Can't directly compare payload data, since it is encrypted
- Standard approach: insert and observe delays
- Protocol bug until recently: covert channel in hidden service lookup

Next time

How usability affects security