
CSci 5271
Introduction to Computer Security

Middleboxes and malware combined slides
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Preview question

A “captive portal” on a WiFi network directs all HTTP traffic to a login

web server. Which kind of tunneling might slowly circumvent this?

A. DNS over HTTPS

B. UDP over TCP

C. SOCKS over SSH

D. IP over DNS

E. HTTPS over HTTP

Outline

More causes of crypto failure

Firewalls and NAT boxes

Intrusion detection systems

Malware and the network

Denial of service and the network

Random numbers and entropy

Cryptographic RNGs use cipher-like techniques to
provide indistinguishability
But rely on truly random seeding to stop brute force

Extreme case: no entropy ! always same “randomness”

Modern best practice: seed pool with 256 bits of
entropy

Suitable for security levels up to 2256

Netscape RNG failure

Early versions of Netscape SSL (1994-1995) seeded
with:

Time of day
Process ID
Parent process ID

Best case entropy only 64 bits
(Not out of step with using 40-bit encryption)

But worse because many bits guessable

Debian/OpenSSL RNG failure (1)

OpenSSL has pretty good scheme using
/dev/urandom

Also mixed in some uninitialized variable values
“Extra variation can’t hurt”

From modern perspective, this was the original sin
Remember undefined behavior discussion?

But had no immediate ill effects

Debian/OpenSSL RNG failure (2)

Debian maintainer commented out some lines to fix
a Valgrind warning

“Potential use of uninitialized value”

Accidentally disabled most entropy (all but 16 bits)

Brief mailing list discussion didn’t lead to
understanding

Broken library used for �2 years before discovery

Detected RSA/DSA collisions
2012: around 1% of the SSL keys on the public net
are breakable

Some sites share complete keypairs
RSA keys with one prime in common (detected by
large-scale GCD)

One likely culprit: insufficient entropy in key
generation

Embedded devices, Linux /dev/urandom vs.
/dev/random

DSA signature algorithm also very vulnerable

Side-channel attacks
Timing analysis:

Number of 1 bits in modular exponentiation
Unpadding, MAC checking, error handling
Probe cache state of AES table entries

Power analysis
Especially useful against smartcards

Fault injection

Data non-erasure
Hard disks, “cold boot” on RAM

WEP “privacy”

First WiFi encryption standard: Wired Equivalent
Privacy (WEP)

F&S: designed by a committee that contained no
cryptographers
Problem 1: note “privacy”: what about integrity?

Nope: stream cipher + CRC = easy bit flipping

WEP shared key

Single key known by all parties on network

Easy to compromise

Hard to change

Also often disabled by default

Example: a previous employer

WEP key size and IV size

Original sizes: 40-bit shared key (export restrictions)
plus 24-bit IV = 64-bit RC4 key

Both too small

128-bit upgrade kept 24-bit IV
Vague about how to choose IVs
Least bad: sequential, collision takes hours
Worse: random or everyone starts at zero

WEP RC4 related key attacks

Only true crypto weakness

RC4 “key schedule” vulnerable when:
RC4 keys very similar (e.g., same key, similar IV)
First stream bytes used

Not a practical problem for other RC4 users like SSL
Key from a hash, skip first output bytes

New problem with WPA (CCS’17)

Session key set up in a 4-message handshake

Key reinstallation attack: replay #3
Causes most implementations to reset nonce and replay
counter
In turn allowing many other attacks
One especially bad case: reset key to 0

Protocol state machine behavior poorly described in
spec

Outside the scope of previous security proofs

Trustworthiness of primitives

Classic worry: DES S-boxes

Obviously in trouble if cipher chosen by your
adversary

In a public spec, most worrying are unexplained
elements

Best practice: choose constants from well-known
math, like digits of �

Dual EC DRBG (1)

Pseudorandom generator in NIST standard, based on
elliptic curve

Looks like provable (slow enough!) but strangely no
proof

Specification includes long unexplained constants

Academic researchers find:
Some EC parts look good
But outputs are statistically distinguishable

Dual EC DRBG (2)

Found 2007: special choice of constants allows
prediction attacks

Big red flag for paranoid academics

Significant adoption in products sold to US govt.
FIPS-140 standards

Semi-plausible rationale from RSA (EMC)

NSA scenario basically confirmed by Snowden leaks
NIST and RSA immediately recommend withdrawal

Outline

More causes of crypto failure

Firewalls and NAT boxes

Intrusion detection systems

Malware and the network

Denial of service and the network

Internet addition: middleboxes

Original design: middle of net is only routers
End-to-end principle

Modern reality: more functionality in the network

Security is one major driver

Security/connectivity tradeoff

A lot of security risk comes from a network
connection

Attacker could be anywhere in the world

Reducing connectivity makes security easier

Connectivity demand comes from end users

What a firewall is

Basically, a router that chooses not to forward some
traffic

Based on an a-priori policy

More complex architectures have multiple layers
DMZ: area between outer and inner layers, for
outward-facing services

Inbound and outbound control

Most obvious firewall use: prevent attacks from the
outside
Often also some control of insiders

Block malware-infected hosts
Employees wasting time on Facebook
Selling sensitive info to competitors
Nation-state Internet management

May want to log or rate-limit, not block

Default: deny

Usual whitelist approach: first, block everything

Then allow certain traffic

Basic: filter packets based on headers

More sophisticated: proxy traffic at a higher level

IPv4 address scarcity

Design limit of 232 hosts
Actually less for many reasons

Addresses becoming gradually more scarce over a
many-year scale

Some high-profile exhaustions in 2011

IPv6 adoption still quite low, occasional signs of
progress

Network address translation (NAT)

Middlebox that rewrites addresses in packets

Main use: allow inside network to use non-unique IP
addresses

RFC 1918: 10.*, 192.168.*, etc.
While sharing one outside IP address

Inside hosts not addressable from outside
De-facto firewall

Packet filtering rules

Match based on:
Source IP address
Source port
Destination IP address
Destination port
Packet flags: TCP vs. UDP, TCP ACK, etc.

Action, e.g. allow or block

Obviously limited in specificity

Client and server ports

TCP servers listen on well-known port numbers
Often < 1024, e.g. 22 for SSH or 80 for HTTP

Clients use a kernel-assigned random high port

Plain packet filter would need to allow all high-port
incoming traffic

Stateful filtering

In general: firewall rules depend on previously-seen
traffic
Key instance: allow replies to an outbound
connection
See: port 23746 to port 80
Allow incoming port 23746

To same inside host

Needed to make a NAT practical

Circuit-level proxying

Firewall forwards TCP connections for inside client

Standard protocol: SOCKS
Supported by most web browsers
Wrapper approaches for non-aware apps

Not much more powerful than packet-level filtering

Application-level proxying

Knows about higher-level semantics

Long history for, e.g., email, now HTTP most
important
More knowledge allows better filtering decisions

But, more effort to set up

Newer: “transparent proxy”
Pretty much a man-in-the-middle

Tunneling

Any data can be transmitted on any channel, if both
sides agree
E.g., encapsulate IP packets over SSH connection

Compare covert channels, steganography

Powerful way to subvert firewall
Some legitimate uses

Tunneling example: HA2

Outline

More causes of crypto failure

Firewalls and NAT boxes

Intrusion detection systems

Malware and the network

Denial of service and the network

Basic idea: detect attacks

The worst attacks are the ones you don’t even know
about
Best case: stop before damage occurs

Marketed as “prevention”

Still good: prompt response

Challenge: what is an attack?

Network and host-based IDSes

Network IDS: watch packets similar to firewall
But don’t know what’s bad until you see it
More often implemented offline

Host-based IDS: look for compromised process or
user from within machine

Signature matching

Signature is a pattern that matches known bad
behavior

Typically human-curated to ensure specificity

See also: anti-virus scanners

Anomaly detection

Learn pattern of normal behavior

“Not normal” is a sign of a potential attack

Has possibility of finding novel attacks

Performance depends on normal behavior too

Recall: FPs and FNs

False positive: detector goes off without real attack

False negative: attack happens without detection

Any detector design is a tradeoff between these
(ROC curve)

Signature and anomaly weaknesses

Signatures
Won’t exist for novel attacks
Often easy to attack around

Anomaly detection
Hard to avoid false positives
Adversary can train over time

Base rate problems

If the true incidence is small (low base rate), most
positives will be false

Example: screening test for rare disease

Easy for false positives to overwhelm admins

E.g., 100 attacks out of 10 million packets, 0.01% FP
rate

How many false alarms?

Adversarial challenges

FP/FN statistics based on a fixed set of attacks

But attackers won’t keep using techniques that are
detected
Instead, will look for:

Existing attacks that are not detected
Minimal changes to attacks
Truly novel attacks

Wagner and Soto mimicry attack

Host-based IDS based on sequence of syscalls

Compute A \M, where:
A models allowed sequences
M models sequences achieving attacker’s goals

Further techniques required:
Many syscalls made into NOPs
Replacement subsequences with similar effect

Outline

More causes of crypto failure

Firewalls and NAT boxes

Intrusion detection systems

Malware and the network

Denial of service and the network

Malicious software

Shortened to Mal. . . ware

Software whose inherent goal is malicious
Not just used for bad purposes

Strong adversary

High visibility

Many types

Trojan (horse)

Looks benign, has secret malicious functionality

Key technique: fool users into installing/running

Concern dates back to 1970s, MLS

(Computer) viruses

Attaches itself to other software

Propagates when that program runs

Once upon a time: floppy disks

More modern: macro viruses

Have declined in relative importance

Worms

Completely automatic self-propagation

Requires remote security holes

Classic example: 1988 Morris worm

“Golden age” in early 2000s

Internet-level threat seems to have declined

Fast worm propagation

Initial hit-list
Pre-scan list of likely targets
Accelerate cold-start phase

Permutation-based sampling
Systematic but not obviously patterned
Pseudorandom permutation

Approximate time: 15 minutes
“Warhol worm”
Too fast for human-in-the-loop response

Getting underneath

Lower-level/higher-privilege code can deceive
normal code

Rootkit: hide malware by changing kernel behavior

MBR virus: take control early in boot

Blue-pill attack: malware is a VMM running your
system

Malware motivation

Once upon a time: curiosity, fame

Now predominates: money
Modest-size industry
Competition and specialization

Also significant: nation-states
Industrial espionage
Stuxnet (not officially acknowledged)

User-based monetization

Adware, mild spyware

Keyloggers, stealing financial credentials

Ransomware
Application of public-key encryption
Malware encrypts user files
Only $300 for decryption key

Bots and botnets

Bot: program under control of remote attacker

Botnet: large group of bot-infected computers with
common “master”
Command & control network protocol

Once upon a time: IRC
Now more likely custom and obfuscated
Centralized ! peer-to-peer
Gradually learning crypto and protocol lessons

Bot monetization

Click (ad) fraud

Distributed DoS (next section)

Bitcoin mining

Pay-per-install (subcontracting)

Spam sending

Malware/anti-virus arms race

“Anti-virus” (AV) systems are really general
anti-malware

Clear need, but hard to do well

No clear distinction between benign and malicious

Endless possibilities for deception

Signature-based AV

Similar idea to signature-based IDS

Would work well if malware were static

In reality:
Large, changing database
Frequent updated from analysts
Not just software, a subscription
Malware stays enough ahead to survive

Emulation and AV

Simple idea: run sample, see if it does something evil

Obvious limitation: how long do you wait?

Simple version can be applied online

More sophisticated emulators/VMs used in backend
analysis

Polymorphism

Attacker makes many variants of starting malware

Different code sequences, same behavior

One estimate: 30 million samples observed in 2012

But could create more if needed

Packing

Sounds like compression, but real goal is obfuscation

Static code creates real code on the fly

Or, obfuscated bytecode interpreter

Outsourced to independent “protection” tools

Fake anti-virus

Major monentization strategy recently

Your system is infected, pay $19.95 for cleanup tool

For user, not fundamentally distinguishable from real
AV

Outline

More causes of crypto failure

Firewalls and NAT boxes

Intrusion detection systems

Malware and the network

Denial of service and the network

DoS versus other vulnerabilities

Effect: normal operations merely become impossible

Software example: crash as opposed to code
injection
Less power that complete compromise, but practical
severity can vary widely

Airplane control DoS, etc.

When is it DoS?

Very common for users to affect others’
performance

Focus is on unexpected and unintended effects

Unexpected channel or magnitude

Algorithmic complexity attacks

Can an adversary make your algorithm have
worst-case behavior?

O(n2) quicksort

Hash table with all entries in one bucket

Exponential backtracking in regex matching

XML entity expansion

XML entities (c.f. HTML <) are like C macros

#define B (A+A+A+A+A)

#define C (B+B+B+B+B)

#define D (C+C+C+C+C)

#define E (D+D+D+D+D)

#define F (E+E+E+E+E)

Compression DoS

Some formats allow very high compression ratios
Simple attack: compress very large input

More powerful: nested archives

Also possible: “zip file quine” decompresses to itself

DoS against network services

Common example: keep legitimate users from
viewing a web site

Easy case: pre-forked server supports 100
simultaneous connections

Fill them with very very slow downloads

Tiny bit of queueing theory

Mathematical theory of waiting in line

Simple case: random arrival, sequential fixed-time
service

M/D/1

If arrival rate � service rate, expected queue length
grows without bound

SYN flooding

SYN is first of three packets to set up new
connection

Traditional implementation allocates space for
control data

However much you allow, attacker fills with
unfinished connections

Early limits were very low (10-100)

SYN cookies

Change server behavior to stateless approach

Embed small amount of needed information in fields
that will be echoed in third packet

MAC-like construction

Other disadvantages, so usual implementations used
only under attack

DoS against network links

Try to use all available bandwidth, crowd out real
traffic

Brute force but still potentially effective

Baseline attacker power measured by packet
sending rate

Traffic multipliers

Third party networks (not attacker or victim)

One input packet causes n output packets

Commonly, victim’s address is forged source,
multiply replies

Misuse of debugging features

“Smurf” broadcast ping

ICMP echo request with forged source

Sent to a network broadcast address

Every recipient sends reply

Now mostly fixed by disabling this feature

Distributed DoS

Many attacker machines, one victim

Easy if you own a botnet

Impractical to stop bots one-by-one

May prefer legitimate-looking traffic over weird
attacks

Main consideration is difficulty to filter

Next time

Network anonymity with overlay networks

