CSci 5271
Introduction to Computer Security
Web/crypto/middieboxes combined slides

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline
More web risks

HTTP header injection

©) Untrusted data included in response headers

©) Can include CRLF and new headers, or premature
end to headers

©) AKA “response splitting”

Content sniffing

©) Browsers determine file type from headers,
extension, and content-based quessing
m Latter two for ~ 1% server errors
£) Many sites host “untrusted” images and media
£ Inconsistencies in guessing lead to a kind of XSS
® Eg, "chimera” PNG-HTML document

Cross-site request forgery

) Certain web form on bank . com used to wire money

©) Link or script on evil.com loads it with certain
parameters
® Linking is exception to same-origin

o If 'm logged in, money sent automatically
) Confused deputy, cookies are ambient authority

CSRF prevention

£) Give site’'s forms random-nonce tokens

® E.g, in POST hidden fields
® Not in a cookie, that's the whole point

£) Reject requests without proper token
® Or, ask user to re-authenticate

£) XSS can be used to steal CSRF tokens

Open redirects

£) Common for one page to redirect clients to another

©) Target should be validated
® With authentication check if appropriate
£) Open redirect. target supplied in parameter with no
checks
® Doesn't directly hurt the hosting site

® But reputation risk, say if used in phishing
® We teach users to trust by site

Misconfiguration problems

) Default accounts
©) Unneeded features

£) Framework behaviors
® Don't automatically create variables from query fields




Openness tradeoffs

©) Error reporting

® Few benign users want to see a stack backtrace
) Directory listings

® Hallmark of the old days
©) Readable source code of scripts

® Doesn't have your DB password in it, does it?

Using vulnerable components

©) Large web apps can use a lot of third-party code

£) Convenient for attackers too

= OWASP: two popular vulnerable components downloaded
22m times

£) Hiding doesn't work if it's popular
£) Stay up to date on security announcements

Clickjacking

£) Fool users about what they're clicking on
® Circumvent security confirmations
® Fabricate ad interest
©) Example techniques:
® Frame embedding
® Transparency
® Spoof cursor
® Temporal “bait and switch”

Crawling and scraping

o) A lot of web content is free-of-charge, but

proprietary
® Yours in a certain context, if you view ads, etc.

£) Sites don't want it downloaded automatically (web
crawling)

£) Or parsed and user for another purpose (screen
scraping)

£ High-rate or honest access detectable

Outline

Confidentiality and privacy

Site perspective

£) Protect confidentiality of authenticators
® Passwords, session cookies, CSRF tokens
£) Duty to protect some customer info
® Personally identifying info (“identity theft”)
® Credit-card info (Payment Card Industry Data Security
Standards)
® Health care (HIPAA), education (FERPA)
® Whatever customers reasonably expect

You need to use SSL

©) Finally coming around to view that more sites need
to support HTTPS
® Special thanks to WiFi, NSA
o) If you take credit cards (of course)

o) If you ask users to log in

® Must be protecting something, right?
® Also important for users of Tor et al.

Server-side encryption

£) Also consider encrypting data “at rest”
£) (Or, avoid storing it at all)
£) Provides defense in depth

® Reduce damage after another attack

£) May be hard to truly separate keys

® OWASP example: public key for website — backend
credit card info




Adjusting client behavior

©) HTTPS and password fields are basic hints

©) Consider disabling autocomplete
® Usability tradeoff, save users from themselves
® Finally standardized in HTML5

£) Consider disabling caching

® Performance tradeoff
® Better not to have this on user’s disk
® Or proxy? You need SSL

User vs. site perspective

£) User privacy goals can be opposed to site goals
©) Such as in tracking for advertisements

) Browser makers can find themselves in the middle
® Of course, differ in institutional pressures

Third party content / web bugs

£) Much tracking involves sites other than the one in

the URL bar
® For fun, check where your cookies are coming from

) Various levels of cooperation

£) Web bugs are typically 1x1 images used only for
tracking

Flike <0

Cookies arms race

£) Privacy-sensitive users like to block and/or delete
cookies
£) Sites have various reasons to retain identification

£) Various workarounds:

® Similar features in Flash and HTML5

® Various channels related to the cache

® Evercookie: store in . places, regenerate if subset are
deleted

Browser fingerprinting

£) Combine various server or JS-visible attributes
passively
® User agent string (10 bits)
® Window/screen size (483 bits)
® Available fonts (13.9 bits)
® Plugin verions (15.4 bits)

(Data from panopticlick.eff.org, far from exhaustive)

History stealing

©) History of what sites you've visited is not supposed

to be JS-visible
£) But, many side-channel attacks have been possible
® Query link color
® CSS style with external image for visited links
® Slow-rendering timing channel
® Harvesting bitmaps
m User perception (e.g. fake CAPTCHA)

Browser and extension choices

£) More aggressive privacy behavior lives in extensions
® Disabling most JavaScript (NoScript)
® HTTPS Everywhere (whitelist)
® Tor Browser Bundle
) Default behavior is much more controversial
® Concern not to kill advertising support as an economic
model

Outline

Announcements intermission




Upcoming events

©) Inidividual progress reports due tonight
©) Exercise set 4 out, due next Wednesday
©) Project meetings next week

©) HA2 due a week from Friday

Outline

More crypto protocols

Abstract protocols

©) Outline of what information is communicated in
messages
® Omit most details of encoding, naming, sizes, choice of
ciphers, etc.

©) Describes honest operation
® But must be secure against adversarial participants

©) Seemingly simple, but many subtle problems

Protocol notation

A—B: NB,{T(),B, NB}KB
©) A — B: message sent from Alice intended for Bob
£) B (after :): Bob's name
0 {- - - Jx: encryption with key K

Needham-Schroeder

Mutual authentication via nonce exchange, assuming
public keys (core):

A—B: {NA, A}EB

B—A: {NA)NB}EA

A— B: {NB}EB

Needham-Schroeder MITM

A—C: {NA)A}EC
C—-B: {NA,A}EB
B—C: {NA,NB}EA
C—oA: {NA,NB}EA
A—C: {NB}EC
C—oB: {NB}EB

Certificates, Denning-Sacco

©) A certificate signed by a trusted third-party S binds
an identity to a public key
® C, = Signg(A, Ka)
©) Suppose we want to use S in establishing a session
A—S: AB
key Kag: S—A: CA, Cg
A — B: Ca, Cg, {Sign, (Kas)}k,

Attack against Denning-Sacco

A—S: A,B
S—A: CA, CB

A — B: Ca,Cg,{Sign, (Kag)lk,
B—S: B,C

S—B: CB, CC

B—C: CA) CC){SignA(KAB)}KC
By re-encrypting the signed key, Bob can pretend to be
Alice to Charlie




Envelopes analogy

©) Encrypt then sign, or vice-versa?

£) On paper, we usually sign inside an envelope, not
outside. Two reasons:
® Attacker gets letter, puts in his own envelope (cf. attack
against X.509)
® Signer claims “didn't know what was in the envelope”
(failure of non-repudiation)

Design robustness principles

£) Use timestamps or nonces for freshness
£) Be explicit about the context
£) Don't trust the secrecy of others’ secrets

£) Whenever you sign or decrypt, beware of being an
oracle

£) Distinguish runs of a protocol

Implementation principles

©) Ensure unique message types and parsing

) Design for ciphers and key sizes to change
©) Limit information in outbound error messages
©) Be careful with out-of-order messages

Outline

More causes of crypto failure

Random numbers and entropy

©) Cryptographic RNGs use cipher-like techniques to
provide indistinguishability
£) But rely on truly random seeding to stop brute force

® Extreme case: no entropy — always same “randomness”

©) Modern best practice: seed pool with 256 bits of
entropy
® Suitable for security levels up to 22°¢

Netscape RNG failure

£) Early versions of Netscape SSL (1994-1995) seeded
with:
® Time of day
® Process ID
® Parent process ID

£) Best case entropy only 64 bits
® (Not out of step with using 40-bit encryption)

£) But worse because many bits guessable

Debian/OpenSSL RNG failure (1)

£) OpenSSL has pretty good scheme using
/dev/urandom
£) Also mixed in some uninitialized variable values
® “Extra variation can't hurt”
©) From modern perspective, this was the original sin
® Remember undefined behavior discussion?

©) But had no immediate ill effects

Debian/OpenSSL RNG failure (2)

) Debian maintainer commented out some lines to fix
a Valgrind warning
® "Potential use of uninitialized value”

£) Accidentally disabled most entropy (all but 16 bits)

) Brief mailing list discussion didn't lead to
understanding
£) Broken library used for ~2 years before discovery




Detected RSA/DSA collisions

£) 2012: around 1% of the SSL keys on the public net
are breakable
® Some sites share complete keypairs
® RSA keys with one prime in common (detected by
large-scale GCD)
) One likely culprit: insufficient entropy in key
generation
= Embedded devices, Linux /dev/urandom Vs.
/dev/random

£) DSA signature algorithm also very vulnerable

Side-channel attacks

©) Timing analysis:
® Number of 1 bits in modular exponentiation
® Unpadding, MAC checking, error handling
® Probe cache state of AES table entries

£) Power analysis

® Especially useful against smartcards
£) Fault injection
£) Data non-erasure

® Hard disks, “cold boot” on RAM

WEP “privacy”

) First WiFi encryption standard: Wired Equivalent
Privacy (WEP)
£) F&S: designed by a committee that contained no
cryptographers
©) Problem 1. note “privacy”: what about integrity?
® Nope: stream cipher + CRC = easy bit flipping

WEP shared key

£) Single key known by all parties on network
£) Easy to compromise

£) Hard to change

£) Also often disabled by default

£) Example: a previous employer

WEP key size and IV size

©) Original sizes: 40-bit shared key (export restrictions)
plus 24-bit IV = 64-bit RC4 key
® Both too small
£) 128-bit upgrade kept 24-bit IV

® Vague about how to choose IVs
® Least bad: sequential, collision takes hours
® Worse: random or everyone starts at zero

WEP RC4 related key attacks

£) Only true crypto weakness

£) RC4 “key schedule” vulnerable when:
® RC4 keys very similar (e.g, same key, similar 1V)
® First stream bytes used

©) Not a practical problem for other RC4 users like SSL
® Key from a hash, skip first output bytes

New problem with WPA (CCS'17)

£) Session key set up in a 4-message handshake

©) Key reinstallation attack: replay #3
® Causes most implementations to reset nonce and replay
counter
® In turn allowing many other attacks
® One especially bad case: reset key to O

) Protocol state machine behavior poorly described in
spec
® Outside the scope of previous security proofs

Trustworthiness of primitives

£) Classic worry: DES S-boxes

£) Obviously in trouble if cipher chosen by your
adversary

©) In a public spec, most worrying are unexplained
elements

£) Best practice: choose constants from well-known
math, like digits of 7t




Dual EC DRBG (1)

©) Pseudorandom generator in NIST standard, based on
elliptic curve

©) Looks like provable (slow enough!) but strangely no
proof

) Specification includes long unexplained constants

©) Academic researchers find:

® Some EC parts look good
® But outputs are statistically distinguishable

Dual EC DRBG (2)

©) Found 2007: special choice of constants allows
prediction attacks
® Big red flag for paranoid academics
£ Significant adoption in products sold to US govt.
FIPS-140 standards
= Semi-plausible rationale from RSA (EMC)
£) NSA scenario basically confirmed by Snowden leaks
® NIST and RSA immediately recommend withdrawal

Outline

Firewalls and NAT boxes

Internet addition: middleboxes

£) Original design: middle of net is only routers

® End-to-end principle
£) Modern reality: more functionality in the network
£) Security is one major driver

Security/connectivity tradeoff

©) A lot of security risk comes from a network

connection
® Attacker could be anywhere in the world

©) Reducing connectivity makes security easier
£) Connectivity demand comes from end users

What a firewall is

©) Basically, a router that chooses not to forward some
traffic
® Based on an a-priori policy
£) More complex architectures have multiple layers

® DMZ area between outer and inner layers, for
outward-facing services

Inbound and outbound control

£) Most obvious firewall use: prevent attacks from the
outside
) Often also some control of insiders

® Block malware-infected hosts

® Employees wasting time on Facebook
® Selling sensitive info to competitors
® Nation-state Internet management

©) May want to log or rate-limit, not block

Default: deny

£) Usual whitelist approach: first, block everything
©) Then allow certain traffic

£) Basic: filter packets based on headers

£) More sophisticated: proxy traffic at a higher level




IPv4 address scarcity

© Design limit of 232 hosts
® Actually less for many reasons
©) Addresses becoming gradually more scarce over a
many-year scale
©) Some high-profile exhaustions in 201
©) IPv6 adoption still quite low, occasional signs of
progress

Network address translation (NAT)

£) Middlebox that rewrites addresses in packets

©) Main use: allow inside network to use non-unique IP

addresses
® RFC 1918: 10.*, 192168 *, etc.
® While sharing one outside IP address

) Inside hosts not addressable from outside
m De-facto firewall

Packet filtering rules

£) Match based on:

® Source IP address

® Source port

® Destination IP address

® Destination port

® Packet flags: TCP vs. UDP TCP ACK, etc.

©) Action, e.g. allow or block
) Obviously limited in specificity

Client and server ports

£) TCP servers listen on well-known port numbers
® Often < 1024, eg. 22 for SSH or 80 for HTTP

©) Clients use a kernel-assigned random high port

£) Plain packet filter would need to allow all high-port
incoming traffic

Stateful filtering

©) In general: firewall rules depend on previously-seen
traffic

©) Key instance: allow replies to an outbound
connection

©) See: port 23746 to port 80

©) Allow incoming port 23746
® To same inside host

©) Needed to make a NAT practical

Circuit-level proxying

) Firewall forwards TCP connections for inside client

©) Standard protocol: SOCKS

® Supported by most web browsers
® Wrapper approaches for non-aware apps

£) Not much more powerful than packet-level filtering

Application-level proxying

©) Knows about higher-level semantics
©) Long history for, e.g.,, email, now HTTP most
important
©) More knowledge allows better filtering decisions
® But, more effort to set up

©) Newer: “transparent proxy”
® Pretty much a man-in-the-middle

Tunneling

£) Any data can be transmitted on any channel, if both
sides agree
©) Eg, encapsulate IP packets over SSH connection
® Compare covert channels, steganography
) Powerful way to subvert firewall
® Some legitimate uses




Tunneling example: HA2

cse

Outline

Intrusion detection systems

Basic idea: detect attacks

©) The worst attacks are the ones you don't even know
about
£) Best case: stop before damage occurs
® Marketed as “prevention”
) Still good: prompt response

©) Challenge: what is an attack?

Network and host-based IDSes

£) Network IDS: watch packets similar to firewall

® But don't know what's bad until you see it
® More often implemented offline

) Host-based IDS: look for compromised process or
user from within machine

Signature matching

£) Signature is a pattern that matches known bad
behavior

©) Typically human-curated to ensure specificity
£) See also: anti-virus scanners

Anomaly detection

£) Learn pattern of normal behavior
£ "Not normal” is a sign of a potential attack
£) Has possibility of finding novel attacks

£) Performance depends on normal behavior too

Recall: FPs and FNs

©) False positive: detector goes off without real attack
) False negative: attack happens without detection

©) Any detector design is a tradeoff between these
(ROC curve)

Signature and anomaly weaknesses

£) Signatures
® Won't exist for novel attacks
® Often easy to attack around
£) Anomaly detection

® Hard to avoid false positives
® Adversary can train over time




Base rate problems

0 If the true incidence is small (low base rate), most
positives will be false
® Example: screening test for rare disease
) Easy for false positives to overwhelm admins
©) Eg, 100 attacks out of 10 million packets, 0.01% FP

rate
® How many false alarms?

Adversarial challenges

©) FP/FN statistics based on a fixed set of attacks

£) But attackers won't keep using techniques that are
detected
) Instead, will look for:

® Existing attacks that are not detected
® Minimal changes to attacks
® Truly novel attacks

Wagner and Soto mimicry attack

£) Host-based IDS based on sequence of syscalls

©) Compute A N M, where:

® A models allowed sequences
® M models sequences achieving attacker’'s goals

©) Further techniques required:

® Many syscalls made into NOPs
® Replacement subsequences with similar effect

Next time

£) Malware and network denial of service




