
CSci 5271
Introduction to Computer Security

Web security, part 1
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

The web from a security perspective

SQL injection

Announcements intermission

Web authentication failures

Once upon a time: the static web

HTTP: stateless file download protocol
TCP, usually using port 80

HTML: markup language for text with formatting and
links

All pages public, so no need for authentication or
encryption

Web applications

The modern web depends heavily on active software

Static pages have ads, paywalls, or “Edit” buttons

Many web sites are primarily forms or storefronts

Web hosted versions of desktop apps like word
processing

Server programs

Could be anything that outputs HTML

In practice, heavy use of databases and frameworks

Wide variety of commercial, open-source, and
custom-written
Flexible scripting languages for ease of development

PHP, Ruby, Perl, etc.

Client-side programming

Java: nice language, mostly moved to other uses

ActiveX: Windows-only binaries, no sandboxing
Glad to see it on the way out

Flash and Silverlight: most important use is DRM-ed
video

Core language: JavaScript

JavaScript and the DOM

JavaScript (JS) is a dynamically-typed prototype-OO
language

No real similarity with Java

Document Object Model (DOM): lets JS interact with
pages and the browser

Extensive security checks for untrusted-code model

Same-origin policy

Origin is a tuple (scheme, host, port)
E.g., (http, www.umn.edu, 80)

Basic JS rule: interaction is allowed only with the
same origin

Different sites are (mostly) isolated applications

GET, POST, and cookies

GET request loads a URL, may have parameters
delimited with ?, &, =

Standard: should not have side-effects

POST request originally for forms
Can be larger, more hidden, have side-effects

Cookie: small token chosen by server, sent back on
subsequent requests to same domain

User and attack models

“Web attacker” owns their own site
(www.attacker.com)

And users sometimes visit it
Realistic reasons: ads, SEO

“Network attacker” can view and sniff unencrypted
data

Unprotected coffee shop WiFi

Outline

The web from a security perspective

SQL injection

Announcements intermission

Web authentication failures

Relational model and SQL

Relational databases have tables with rows and
single-typed columns

Used in web sites (and elsewhere) to provide
scalable persistent storage

Allow complex queries in a declarative language SQL

Example SQL queries

SELECT name, grade FROM Students WHERE

grade < 60 ORDER BY name;

UPDATE Votes SET count = count + 1 WHERE

candidate = 'John';

Template: injection attacks

Your program interacts with an interpreted language

Untrusted data can be passed to the interpreter

Attack data can break parsing assumptions and
execute arbitrary commands

SQL + injection

Why is this named most critical web app. risk?

Easy mistake to make systematically

Can be easy to exploit

Database often has high-impact contents
E.g., logins or credit cards on commerce site

Strings do not respect syntax

Key problem: assembling commands as strings

"WHERE name = '$name';"

Looks like $name is a string

Try $name = "me' OR grade > 80; --"

Using tautologies

Tautology: formula that’s always true

Often convenient for attacker to see a whole table

Classic: OR 1=1

Non-string interfaces

Best fix: avoid constructing queries as strings

SQL mechanism: prepared statement
Original motivation was performance

Web languages/frameworks often provide other
syntax

Retain functionality: escape

Sanitizing data is transforming it to prevent an attack

Escaped data is encoded to match language rules
for literal

E.g., \" and \n in C

But many pitfalls for the unwary:
Differences in escape syntax between servers
Must use right escape for context: not everything’s a
string

Lazy sanitization: whitelisting

Allow only things you know to be safe/intended

Error or delete anything else

Short whitelist is easy and relatively easy to secure

E.g., digits only for non-negative integer

But, tends to break benign functionality

Poor idea: blacklisting

Space of possible attacks is endless, don’t try to
think of them all

Want to guess how many more comment formats
SQL has?

Particularly silly: blacklisting 1=1

Attacking without the program

Often web attacks don’t get to see the program
Not even binary, it’s on the server

Surmountable obstacle:
Guess natural names for columns
Harvest information from error messages

Blind SQL injection

Attacking with almost no feedback

Common: only “error” or “no error”

One bit channel you can make yourself: if (x) delay
10 seconds

Trick to remember: go one character at a time

Injection beyond SQL

XPath/XQuery: queries on XML data

LDAP: queries used for authentication

Shell commands: example from Ex. 1

More web examples to come

Outline

The web from a security perspective

SQL injection

Announcements intermission

Web authentication failures

Note to early readers

This is the section of the slides most likely to change
in the final version

If class has already happened, make sure you have
the latest slides for announcements

Outline

The web from a security perspective

SQL injection

Announcements intermission

Web authentication failures

Per-website authentication

Many web sites implement their own login systems
+ If users pick unique passwords, little systemic risk
- Inconvenient, many will reuse passwords
- Lots of functionality each site must implement correctly
- Without enough framework support, many possible pitfalls

Building a session

HTTP was originally stateless, but many sites want
stateful login sessions

Building by tying requests together with a shared
session ID

Must protect confidentiality and integrity

Session ID: what

Must not be predictable
Not a sequential counter

Should ensure freshness
E.g., limited validity window

If encoding data in ID, must be unforgeable
E.g., data with properly used MAC
Negative example: crypt(username k server secret)

Session ID: where

Session IDs in URLs are prone to leaking
Including via user cut-and-paste

Usual choice: non-persistent cookie
Against network attacker, must send only under HTTPS

Because of CSRF (next time), should also have a
non-cookie unique ID

Session management

Create new session ID on each login

Invalidate session on logout

Invalidate after timeout
Usability / security tradeoff
Needed to protect users who fail to log out from public
browsers

Account management

Limitations on account creation
CAPTCHA? Outside email address?

See previous discussion on hashed password
storage
Automated password recovery

Usually a weak spot
But, practically required for large system

Client and server checks

For usability, interface should show what’s possible

But must not rely on client to perform checks

Attackers can read/modify anything on the client
side

Easy example: item price in hidden field

Direct object references

Seems convenient: query parameter names
resource directly

E.g., database key, filename (path traversal)

Easy to forget to validate on each use

Alternative: indirect reference like per-session table
Not fundamentally more secure, but harder to forget
check

Function-level access control

E.g. pages accessed by URLs or interface buttons

Must check each time that user is authorized
Attack: find URL when authorized, reuse when logged off

Helped by consistent structure in code

