
CSci 5271
Introduction to Computer Security

Crypto and protocols combined slides
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Preview question

Which of the following would have to be completely abandoned if

scalable quantum computers become widely available?

A. one-time pads

B. RSA

C. AES

D. ROT-13

E. SHA-3

Outline
Public key encryption and signatures

Cryptographic protocols, pt. 1

Announcements intermission

Key distribution and PKI

SSH

SSL/TLS

DNSSEC

General description

Public-key encryption (generalizes block cipher)
Separate encryption key EK (public) and decryption key
DK (secret)

Signature scheme (generalizes MAC)
Separate signing key SK (secret) and verification key VK
(public)

RSA setup

Choose n = pq, product of two large primes, as
modulus

n is public, but p and q are secret

Compute encryption and decryption exponents e
and d such that

Med =M (mod n)

RSA encryption

Public key is (n; e)

Encryption of M is C =Me (mod n)

Private key is (n; d)

Decryption of C is Cd =Med =M (mod n)

RSA signature

Signing key is (n; d)

Signature of M is S =Md (mod n)

Verification key is (n; e)

Check signature by Se =Mde =M (mod n)

Note: symmetry is a nice feature of RSA, not shared
by other systems

RSA and factoring

We’re not sure factoring is hard (likely not even
NP-complete), but it’s been unsolved for a long time

If factoring is easy (e.g., in P), RSA is insecure

Converse might not be true: RSA might have other
problems



Homomorphism

Multiply RSA ciphertexts ) multiply plaintexts

This homomorphism is useful for some interesting
applications
Even more powerful: fully homomorphic encryption
(e.g., both + and �)

First demonstrated in 2009; still very inefficient

Problems with vanilla RSA

Homomorphism leads to chosen-ciphertext attacks

If message and e are both small compared to n, can
compute M1=e over the integers

Many more complex attacks too

Hybrid encryption

Public-key operations are slow

In practice, use them just to set up symmetric
session keys

+ Only pay RSA costs at setup time

- Breaks at either level are fatal

Padding, try #1

Need to expand message (e.g., AES key) size to
match modulus

PKCS#1 v. 1.5 scheme: prepend 00 01 FF FF .. FF

Surprising discovery (Bleichenbacher’98): allows
adaptive chosen ciphertext attacks on SSL

Variants recurred later (c.f. “ROBOT” 2018)

Modern “padding”

Much more complicated encoding schemes using
hashing, random salts, Feistel-like structures, etc.

Common examples: OAEP for encryption, PSS for
signing

Progress driven largely by improvement in random
oracle proofs

Simpler padding alternative

“Key encapsulation mechanism” (KEM)

For common case of public-key crypto used for
symmetric-key setup

Also applies to DH

Choose RSA message r at random mod n,
symmetric key is H(r)

- Hard to retrofit, RSA-KEM insecure if e and r reused
with different n

Post-quantum cryptography

One thing quantum computers would be good for is
breaking crypto
Square root speedup of general search

Countermeasure: double symmetric security level

Factoring and discrete log become poly-time
DH, RSA, DSA, elliptic curves totally broken
Totally new primitives needed (lattices, etc.)

Not a problem yet, but getting ready

Box and locks revisited

Alice and Bob’s box scheme fails if an intermediary
can set up two sets of boxes

Man-in-the-middle (or middleperson) attack

Real world analogue: challenges of protocol design
and public key distribution



Outline
Public key encryption and signatures

Cryptographic protocols, pt. 1

Announcements intermission

Key distribution and PKI

SSH

SSL/TLS

DNSSEC

A couple more security goals

Non-repudiation: principal cannot later deny having
made a commitment

I.e., consider proving fact to a third party

Forward secrecy: recovering later information does
not reveal past information

Motivates using Diffie-Hellman to generate fresh keys for
each session

Abstract protocols

Outline of what information is communicated in
messages

Omit most details of encoding, naming, sizes, choice of
ciphers, etc.

Describes honest operation
But must be secure against adversarial participants

Seemingly simple, but many subtle problems

Protocol notation

A! B : NB; fT0; B;NBgKB
A! B: message sent from Alice intended for Bob

B (after :): Bob’s name

f� � �gK: encryption with key K

Example: simple authentication

A! B : A; fA;NgKA
E.g., Alice is key fob, Bob is garage door

Alice proves she possesses the pre-shared key KA

Without revealing it directly

Using encryption for authenticity and binding, not
secrecy

Nonce

A! B : A; fA;NgKA
N is a nonce: a value chosen to make a message
unique

Best practice: pseudorandom

In constrained systems, might be a counter or
device-unique serial number

Replay attacks

A nonce is needed to prevent a verbatim replay of a
previous message
Garage door difficulty: remembering previous nonces

Particularly: lunchtime/roommate/valet scenario

Or, door chooses the nonce: challenge-response
authentication

Man-in-the-middle attacks

Gender neutral: middleperson attack

Adversary impersonates Alice to Bob and
vice-versa, relays messages

Powerful position for both eavesdropping and
modification

No easy fix if Alice and Bob aren’t already related



Chess grandmaster problem

Variant or dual of MITM

Adversary forwards messages to simulate
capabilities with his own identity

How to win at correspondence chess

Anderson’s MiG-in-the-middle

Anti-pattern: “oracle”

Any way a legitimate protocol service can give a
capability to an adversary

Can exist whenever a party decrypts, signs, etc.

“Padding oracle” was an instance of this at the
implementation level

Outline
Public key encryption and signatures

Cryptographic protocols, pt. 1

Announcements intermission

Key distribution and PKI

SSH

SSL/TLS

DNSSEC

Upcoming assignments

Exercise set 3: Wednesday night
All relevant lecture material now presented

Next progress reports: week from Wednesday

Other FYIs

Midterm solutions now posted

My Monday 11/11 office hours will be 9:45-10:45
instead of 10-11

Outline
Public key encryption and signatures

Cryptographic protocols, pt. 1

Announcements intermission

Key distribution and PKI

SSH

SSL/TLS

DNSSEC

Public key authenticity

Public keys don’t need to be secret, but they must
be right

Wrong key ! can’t stop MITM

So we still have a pretty hard distribution problem

Symmetric key servers

Users share keys with server, server distributes
session keys

Symmetric key-exchange protocols, or channels

Standard: Kerberos

Drawback: central point of trust



Certificates

A name and a public key, signed by someone else
CA = SignS(A;KA)

Basic unit of transitive trust

Commonly use a complex standard “X.509”

Certificate authorities

“CA” for short: entities who sign certificates

Simplest model: one central CA

Works for a single organization, not the whole world

Web of trust

Pioneered in PGP for email encryption

Everyone is potentially a CA: trust people you know

Works best with security-motivated users
Ever attended a key signing party?

CA hierarchies

Organize CAs in a tree

Distributed, but centralized (like DNS)

Check by follow a path to the root

Best practice: sub CAs are limited in what they
certify

PKI for authorization

Enterprise PKI can link up with permissions

One approach: PKI maps key to name, ACL maps
name to permissions
Often better: link key with permissions directly, name
is a comment

More like capabilities

The revocation problem

How can we make certs “go away” when needed?

Impossible without being online somehow

1. Short expiration times

2. Certificate revocation lists

3. Certificate status checking

Outline
Public key encryption and signatures

Cryptographic protocols, pt. 1

Announcements intermission

Key distribution and PKI

SSH

SSL/TLS

DNSSEC

Short history of SSH

Started out as freeware by Tatu Ylönen in 1995

Original version commercialized

Fully open-source OpenSSH from OpenBSD

Protocol redesigned and standardized for “SSH 2”



OpenSSH t-shirt SSH host keys

Every SSH server has a public/private keypair

Ideally, never changes once SSH is installed

Early generation a classic entropy problem
Especially embedded systems, VMs

Authentication methods

Password, encrypted over channel

.shosts: like .rhosts, but using client host key

User-specific keypair
Public half on server, private on client

Plugins for Kerberos, PAM modules, etc.

Old crypto vulnerabilities

1.x had only CRC for integrity
Worst case: when used with RC4

Injection attacks still possible with CBC
CRC compensation attack

For least-insecure 1.x-compatibility, attack detector

Alas, detector had integer overflow worse than
original attack

Newer crypto vulnerabilities

IV chaining: IV based on last message ciphertext
Allows chosen plaintext attacks
Better proposal: separate, random IVs

Some tricky attacks still left
Send byte-by-byte, watch for errors
Of arguable exploitability due to abort

Now migrating to CTR mode

SSH over SSH

SSH to machine 1, from there to machine 2
Common in these days of NATs

Better: have machine 1 forward an encrypted
connection (cf. HA1)

1. No need to trust 1 for secrecy

2. Timing attacks against password typing

SSH (non-)PKI

When you connect to a host freshly, a mild note

When the host key has changed, a large warning

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now
(man-in-the-middle attack)!
It is also possible that a host key has just been changed.

Outline
Public key encryption and signatures

Cryptographic protocols, pt. 1

Announcements intermission

Key distribution and PKI

SSH

SSL/TLS

DNSSEC



SSL/TLS
Developed at Netscape in early days of the public
web

Usable with other protocols too, e.g. IMAP

SSL 1.0 pre-public, 2.0 lasted only one year, 3.0
much better
Renamed to TLS with RFC process

TLS 1.0 improves SSL 3.0

TLS 1.1 and 1.2 in 2006 and 2008, only gradual
adoption

IV chaining vulnerability

TLS 1.0 uses previous ciphertext for CBC IV

But, easier to attack in TLS:
More opportunities to control plaintext
Can automatically repeat connection

“BEAST” automated attack in 2011: TLS 1.1 wakeup
call

Compression oracle vuln.

Compr(S k A), where S should be secret and A is
attacker-controlled

Attacker observes ciphertext length

If A is similar to S, combination compresses better

Compression exists separately in HTTP and TLS

But wait, there’s more!

Too many vulnerabilities to mention them all in
lecture
Kaloper-Meršinjak et al. have longer list

“Lessons learned” are variable, though

Meta-message: don’t try this at home

HTTPS hierarchical PKI

Browser has order of 100 root certs
Not same set in every browser
Standards for selection not always clear

Many of these in turn have sub-CAs

Also, “wildcard” certs for individual domains

Hierarchical trust?

No. Any CA can sign a cert for any domain

A couple of CA compromises recently

Most major governments, and many companies
you’ve never heard of, could probably make a
google.com cert

Still working on: make browser more picky, compare
notes

CA vs. leaf checking bug

Certs have a bit that says if they’re a CA

All but last entry in chain should have it set

Browser authors repeatedly fail to check this bit

Allows any cert to sign any other cert

MD5 certificate collisions

MD5 collisions allow forging CA certs

Create innocuous cert and CA cert with same hash
Requires some guessing what CA will do, like sequential
serial numbers
Also 200 PS3s

Oh, should we stop using that hash function?



CA validation standards

CA’s job to check if the buyer really is foo.com

Race to the bottom problem:
CA has minimal liability for bad certs
Many people want cheap certs
Cost of validation cuts out of profit

“Extended validation” (green bar) certs attempt to fix

HTTPS and usability

Many HTTPS security challenges tied with user
decisions

Is this really my bank?

Seems to be a quite tricky problem
Security warnings often ignored, etc.
We’ll return to this as a major example later

Outline
Public key encryption and signatures

Cryptographic protocols, pt. 1

Announcements intermission

Key distribution and PKI

SSH

SSL/TLS

DNSSEC

DNS: trusted but vulnerable

Almost every higher-level service interacts with DNS

UDP protocol with no authentication or crypto
Lots of attacks possible

Problems known for a long time, but challenge to fix
compatibly

DNSSEC goals and non-goals

+ Authenticity of positive replies

+ Authenticity of negative replies

+ Integrity

- Confidentiality

- Availability

First cut: signatures and certificates

Each resource record gets an RRSIG signature
E.g., A record for one name!address mapping
Observe: signature often larger than data

Signature validation keys in DNSKEY RRs

Recursive chain up to the root (or other “anchor”)

Add more indirection

DNS needs to scale to very large flat domains like
.com

Facilitated by having single DS RR in parent indicating
delegation

Chain to root now includes DSes as well

Negative answers

Also don’t want attackers to spoof non-existence
Gratuitous denial of service, force fallback, etc.

But don’t want to sign “x does not exist” for all x

Solution 1, NSEC: “there is no name between acacia

and baobab”



Preventing zone enumeration

Many domains would not like people enumerating all
their entries

DNS is public, but “not that public”

Unfortunately NSEC makes this trivial

Compromise: NSEC3 uses password-like salt and
repeated hash, allows opt-out

DANE: linking TLS to DNSSEC

“DNS-based Authentication of Named Entities”

DNS contains hash of TLS cert, don’t need CAs

How is DNSSEC’s tree of certs better than TLS’s?

Signing the root

Political problem: many already distrust US-centered
nature of DNS infrastructure

Practical problem: must be very secure with no
single point of failure
Finally accomplished in 2010

Solution involves ‘key ceremonies’, international
committees, smart cards, safe deposit boxes, etc.

Deployment

Standard deployment problem: all cost and no
benefit to being first mover

Servers working on it, mostly top-down

Clients: still less than 20%

Will probably be common for a while: insecure
connection to secure resolver

What about privacy?

Users increasingly want privacy for their DNS
queries as well
Older DNSCurve and DNSCrypt protocols were not
standardized
More recent “DNS over TLS” and “DNS over HTTPS”
are RFCs
DNS over HTTPS in major browsers might have
serious centralization effects


