CSci 5271
Introduction to Computer Security
Crypto combined slides

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline
Hash functions and MACs, contd

Kinds of attacks

©) Pre-image, “inversion”: given y, find x such that
H(x) =y

©) Second preimage, targeted collision: given x, H(x),
find x" # x such that H(x') = H(x)

) (Free) collision: find x;, x, such that H(x;) = H(x;)

Security levels

£) For function with k-bit output:

£) Preimage and second preimage should have
complexity 2%

) Collision has complexity 2%/2

£) Conservative: use hash function twice as big as

block cipher key
® Though if you're paranoid, cipher blocks can repeat too

Non-cryptographic hash functions

£) The ones you probably use for hash tables

£) CRCs, checksums

) Output too small, but also not resistant to attack
) Eg, CRC is linear and algebraically nice

Short hash function history

£) On the way out: MD5 (128 bit)
® Flaws known, collision-finding now routine

£) SHA(-O): first from NIST/NSA, quickly withdrawn
® Likely flaw discovered 3 years later

£) SHA-I: fixed SHA-O, 160-bit output.

£ 2% collision attack described in 2013
® First public collision found (using 6.5 kCPU yr) in 2017

Length extension problem

©) MD5, SHA, etc, computed left to right over blocks

©) Can sometimes compute H(a || b) in terms of
H(a)
® || means bit string concatenation
©) Makes many PRF-style constructions insecure

SHA-2 and SHA-3

£) SHA-2: evolutionary, larger, improvement of SHA-1
® Exists as SHA-{224, 256,384,512}
® But still has length-extension problem
£) SHA-3: chosen recently in open competition like AES

® Formerly known as Keccak, official standard Aug. 2015
® New design, fixes length extension
® Not yet very widely used




MAC: basic idea

©) Message authentication code: similar to hash
function, but with a key

©) Adversary without key cannot forge MACs

£) Strong definition: adversary cannot forge anything,
even given chosen-message MACs on other
messages

CBC-MAC construction

£) Same process as CBC encryption, but:

® Start with IV of O
® Return only the last ciphertext block

£) Both these conditions needed for security

£ For fixed-length messages (only), as secure as the
block cipher

HMAC construction

© H(K || M): insecure due to length extension
® Still not recommended: H(M || K), H(K || M. || K)

OHMAC. HK @ a || HK® b || M))
©) Standard a = 0x5c*, b = 0x36*
£) Probably the most widely used MAC

Outline

Building a secure channel

Session keys

©) Don't use your long term password, etc., directly as
a key

©) Instead, session key used for just one channel

©) In modern practice, usually obtained with public-key
crypto

) Separate keys for encryption and MACing

Order of operations

©) Encrypt and MAC ("in parallel”)

® Safe only under extra assumptions on the MAC
£ Encrypt then MAC

® Has cleanest formal safety proof
£) MAC then Encrypt

® Preferred by FS&K for some practical reasons
® Can also be secure

Authenticated encryption modes

©) Encrypting and MACing as separate steps is about
twice as expensive as just encrypting
©) "Authenticated encryption” modes do both at once
® Newer (circa 2000) innovation, many variants
©) NIST-standardized and unpatented: Galois Counter
Mode (GCM)

Ordering and message numbers

£) Also don't want attacker to be able to replay or
reorder messages

£) Simple approach: prefix each message with counter

£) Discard duplicate/out-of-order messages




Padding

©) Adjust message size to match multiple of block size
©) To be reversible, must sometimes make message
longer

©) Eq. for 16-byte block, append either 1, or 2 2, or
3 3 3, up to 16 "16” bytes

Padding oracle attack

£) Have to be careful that decoding of padding does
not leak information

©) Eg, spend same amount of time MACing and
checking padding whether or not padding is right

£) Remote timing attack against CBC TLS published
2013

Don't actually reinvent the wheel

©) This is all implemented carefully in OpenSSL, SSH,
etc.

£) Good to understand it, but rarely sensible to
reimplement it

©) You'll probably miss at least one of decades’ worth
of attacks

Outline

Announcements intermission

Exercise set 3

) Covering crypto, up through abstract protocols
©) Available since this morning

©) Due a week from today 11/6

Outline

Public-key crypto basics

Pre-history of public-key crypto

o) First invented in secret at GCHQ
©) Proposed by Ralph Merkle for UC Berkeley grad.
security class project
® First attempt only barely practical
® Professor didn't like it
©) Merkle then found more sympathetic Stanford
collaborators named Diffie and Hellman

Box and locks analogy

£) Alice wants to send Bob a gift in a locked box
® They don't share a key
® Can't send key separately, don't trust UPS

® Box locked by Alice can't be opened by Bob, or
vice-versa




Box and locks analogy

©) Alice wants to send Bob a qift in a locked box

® They don't share a key

® Can't send key separately, don't trust UPS

® Box locked by Alice can't be opened by Bob, or
vice-versa

£) Math perspective: physical locks commute

Protocol with clip art

Alice Bob

Alice Bob

Protocol with clip art

Alice B
B
A

ob

Alice Bob

Protocol with clip art

Alice Bob

Alice Bob

Protocol with clip art

Alice B

«’:fé‘/
\‘%b

Public key primitives

£) Public-key encryption (generalizes block cipher)

® Separate encryption key EK (public) and decryption key
DK (secret)

£) Signature scheme (generalizes MAC)

® Separate signing key SK (secret) and verification key VK
(public)

Modular arithmetic

©) Fix modulus n, keep only remainders mod n
® mod 12: clock face; mod 232 unsigned int

) +, —, and x work mostly the same
©) Division: see Exercise Set 1
©) Exponentiation: efficient by square and multiply

Generators and discrete log

£) Modulo a prime p, non-zero values and x have a
nice (“group”) structure

© g is a generator if ¢°, g, g%, g°, ... cover all
elements

€) Easy to compute x — g~

©) Inverse, discrete logarithm, hard for large p




Diffie-Hellman key exchange

£) Goal: anonymous key exchange

©) Public parameters p, g; Alice and Bob have resp.
secrets a, b

©) Alice—Bob: A =g* (mod p)

©) Bob—Alice: B = g® (mod p)

o) Alice computes B¢ = g*® =k

©) Bob computes A = g% =k

Relationship to a hard problem

£) We're not sure discrete log is hard (likely not even
NP-complete), but it's been unsolved for a long time

€ If discrete log is easy (eg, in P), DH is insecure

£) Converse might not be true: DH might have other
problems

Cateqgorizing assumptions

£) Math assumptions unavoidable, but can categorize

©) E.g., build more complex scheme, shows it's “as
secure” as DH because it has the same underlying
assumption

) Commonly “decisional” (DDH) and “computational”
(CDH) variants

Key size, elliptic curves

£) Need key sizes ~10 times larger then security level
® Attacks shown up to about 768 bits
£ Elliptic curves: objects from higher math with
analogous group structure
® (Only tenuously connected to ellipses)
) Elliptic curve algorithms have smaller keys, about 2x
security level

Outline

Public key encryption and signatures

General description

£) Public-key encryption (generalizes block cipher)

® Separate encryption key EK (public) and decryption key
DK (secret)

£) Signature scheme (generalizes MAC)

® Separate signing key SK (secret) and verification key VK
(public)

RSA setup

©) Choose n = pq, product of two large primes, as
modulus
© n is public, but p and q are secret

©) Compute encryption and decryption exponents e
and d such that

M® =M (modn)

RSA encryption

©) Public key is (n, e)

£ Encryption of M is C = M¢ (mod n)

©) Private key is (n, d)

) Decryption of Cis C{ =M =M (mod n)




RSA signature

©) Signing key is (n, d)

©) Signature of M is S =M% (mod n)

) Verification key is (n, e)

©) Check signature by S¢ =M% =M (mod n)

©) Note: symmetry is a nice feature of RSA, not shared
by other systems

RSA and factoring

£) We're not sure factoring is hard (likely not even
NP-complete), but it's been unsolved for a long time

£ If factoring is easy (e.g, in P), RSA is insecure
£) Converse might not be true: RSA might have other
problems

Homomorphism

©) Multiply RSA ciphertexts = multiply plaintexts

£) This homomorphism is useful for some interesting
applications

©) Even more powerful: fully homomaorphic encryption

(eg, both + and x)
® First demonstrated in 2009; still very inefficient

Problems with vanilla RSA

£) Homomorphism leads to chosen-ciphertext attacks

£ If message and e are both small compared to n, can
compute M'/¢ over the integers

£) Many more complex attacks too

Hybrid encryption

) Public-key operations are slow

©) In practice, use them just to set up symmetric
session keys

+ Only pay RSA costs at setup time

— Breaks at either level are fatal

Padding, try #1

£) Need to expand message (e.g., AES key) size to
match modulus

£) PKCS#1 v. 1.5 scheme: prepend 00 O1 FF FF .. FF

£) Surprising discovery (Bleichenbacher'98). allows
adaptive chosen ciphertext attacks on SSL

Modern “padding”

£) Much more complicated encoding schemes using
hashing, random salts, Feistel-like structures, etc.

©) Common examples: OAEP for encryption, PSS for
signing

£) Progress driven largely by improvement in random
oracle proofs

Simpler padding alternative

£) "Key encapsulation mechanism” (KEM)

£) For common case of public-key crypto used for
symmetric-key setup
® Also applies to DH

£) Choose RSA message r at random mod n,
symmetric key is H(r)

— Hard to retrofit, RSA-KEM insecure if e and r reused
with different n




Box and locks revisited

©) Alice and Bob's box scheme fails if an intermediary
can set up two sets of boxes
® Man-in-the-middle (or middleperson) attack
£) Real world analogue: challenges of protocol design
and public key distribution

Outline

Cryptographic protocols, pt. 1

A couple more security goals

©) Non-repudiation: principal cannot later deny having
made a commitment
® le, consider proving fact to a third party
©) Forward secrecy: recovering later information does
not reveal past information

® Motivates using Diffie-Hellman to generate fresh keys for
each session

Abstract protocols

£) Outline of what information is communicated in
messages

® Omit most details of encoding, naming, sizes, choice of
ciphers, etc.

) Describes honest operation
® But must be secure against adversarial participants

£) Seemingly simple, but many subtle problems

Protocol notation

A — B : Ng,{To, B, NgJk,
©) A — B: message sent from Alice intended for Bob
©) B (after :): Bob's name
o {- - -}x: encryption with key K

Example: simple authentication

A — B:A{A, Nk,
) Eqg, Alice is key fob, Bob is garage door
£) Alice proves she possesses the pre-shared key K
® Without revealing it directly
£) Using encryption for authenticity and binding, not
secrecy

Nonce

A = B:A{A Nk,
©) N is a nonce: a value chosen to make a message
unique
©) Best practice: pseudorandom

©) In constrained systems, might be a counter or
device-unique serial number

Replay attacks

£) A nonce is needed to prevent a verbatim replay of a
previous message
£) Garage door difficulty: remembering previous nonces
® Particularly: lunchtime/roommate/valet scenario
©) Or, door chooses the nonce: challenge-response
authentication




Man-in-the-middle attacks

©) Gender neutral: middleperson attack

£) Adversary impersonates Alice to Bob and
vice-versa, relays messages

©) Powerful position for both eavesdropping and
modification

©) No easy fix if Alice and Bob aren't already related

Chess grandmaster problem

) Variant or dual of MITM

©) Adversary forwards messages to simulate
capabilities with his own identity

©) How to win at correspondence chess
£) Anderson’s MiG-in-the-middle

Outline

Key distribution and PKiI

Public key authenticity

£) Public keys don't need to be secret, but they must
be right

£) Wrong key — can't stop MITM

£) So we still have a pretty hard distribution problem

Symmetric key servers

©) Users share keys with server, server distributes
session keys

£) Symmetric key-exchange protocols, or channels

©) Standard: Kerberos

©) Drawback: central point of trust

Certificates

£) A name and a public key, signed by someone else
®m C, = Signg(A, Ka)

£) Basic unit of transitive trust

£) Commonly use a complex standard “X.509"

Certificate authorities

£) "CA” for short: entities who sign certificates
©) Simplest model: one central CA
£) Works for a single organization, not the whole world

Web of trust

£) Pioneered in PGP for email encryption
©) Everyone is potentially a CA: trust people you know

£) Works best with security-motivated users
® Ever attended a key signing party?




CA hierarchies

©) Organize CAs in a tree

©) Distributed, but centralized (like DNS)

£) Check by follow a path to the root

©) Best practice: sub CAs are limited in what they

certify

PKI for authorization

©) Enterprise PKI can link up with permissions
£) One approach: PKI maps key to name, ACL maps

name to permissions
£) Often better: link key with permissions directly, name

is a comment
® More like capabilities

The revocation problem

£) How can we make certs “go away” when needed?
©) Impossible without being online somehow

1. Short expiration times

2. Certificate revocation lists

3. Certificate status checking




