
CSci 5271
Introduction to Computer Security

Transient Execution, OS Assurance, and Networks
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Transient execution covert channels (cont’d)

OS trust and assurance

Announcements intermission

Brief introduction to networking

Some classic network attacks

Second half of course

Outline

Transient execution covert channels (cont’d)

OS trust and assurance

Announcements intermission

Brief introduction to networking

Some classic network attacks

Second half of course

Trusted and trustworthy

Part of your system is trusted if its failure can break
your security

Thus, OS is almost always trusted

Real question: is it trustworthy?

Distinction not universally observed: trusted boot,
Trusted Solaris, etc.

Trusted (I/O) path

How do you know you’re talking to the right
software?

And no one is sniffing the data?

Example: Trojan login screen
Or worse: unlock screensaver with root password
Origin of “Press Ctrl-Alt-Del to log in”

Minimizing trust

Kernel ! microkernel ! nanokernel

Reference monitor concept

TCB size: measured relative to a policy goal

Reference monitor � TCB
But hard to build monitor for all goals

How to gain assurance

Use for a long time

Testing

Code / design review

Third-party certification

Formal methods / proof

Evaluation / certification

Testing and review performed by an independent
party

Goal: separate incentives, separate accountability

Compare with financial auditing

Watch out for: form over substance, misplaced
incentives



Orange book OS evaluation

Trusted Computer System Evaluation Criteria

D. Minimal protection
C. Discretionary protection

C2 adds, e.g., secure audit over C1
B. Mandatory protection

B1<B2<B3: stricter classic MLS

A. Verified protection

Common Criteria

International standard and agreement for IT security
certification

Certification against a protection profile, and
evaluation assurance level EAL 1-7

Evaluation performed by non-government labs

Up to EAL 4 automatically cross-recognized

Common Criteria, Anderson’s view

Many profiles don’t specify the right things

OSes evaluated only in unrealistic environments
E.g., unpatched Windows XP with no network attacks

“Corruption, Manipulation, and Inertia”
Pernicious innovation: evaluation paid for by vendor
Labs beholden to national security apparatus

Formal methods and proof

Can math come to the rescue?

Checking design vs. implementation

Automation possible only with other tradeoffs
E.g., bounded size model

Starting to become possible: machine-checked proof

Proof and complexity

Formal proof is only feasible for programs that are
small and elegant

If you honestly care about assurance, you want your
TCB small and elegant anyway

Should provability further guide design?

Some hopeful proof results

seL4 microkernel (SOSP’09 and ongoing)
7.5 kL C, 200 kL proof, 160 bugs fixed, 25 person years

CompCert C-subset compiler (PLDI’06 and ongoing)

RockSalt SFI verifier (PLDI’12)

Outline

Transient execution covert channels (cont’d)

OS trust and assurance

Announcements intermission

Brief introduction to networking

Some classic network attacks

Second half of course

Common Criteria question
What’s “common” about the Common Criteria?
A. Every kind of product is evaluated against the same “protection

profile.”
B. Anyone can perform the certification, without special government

approval.
C. The certification applies to devices used in everyday civilian life,

rather than in government or the military.
D. A single certification is recognized by the governments of many

countries.
E. A single certification can be used for products from different

vendors.



Midterm exam Monday

Arrive slightly early to start exam promptly at 1pm

Erasable writing instrument recommended
E.g., mechanical pencil with separate eraser

Open book, notes, printouts, but no electronics

Rest of today’s material is not covered

Outline

Transient execution covert channels (cont’d)

OS trust and assurance

Announcements intermission

Brief introduction to networking

Some classic network attacks

Second half of course

The Internet

A bunch of computer networks voluntarily
interconnected

Capitalized because there’s really only one

No centralized network-level management
But technical collaboration, DNS, etc.

Layered model (OSI)

7. Application (HTTP)

6. Presentation (MIME?)

5. Session (SSL?)

4. Transport (TCP)

3. Network (IP)

2. Data-link (PPP)

1. Physical (10BASE-T)

Layered model: TCP/IP Packet wrapping

IP(v4) addressing

Interfaces (hosts or routers) identified by 32-bit
addresses

Written as four decimal bytes, e.g. 192.168.10.2

First k bits identify network, 32- k host within
network

Can’t (anymore) tell k from the bits

We’ll run out any year now

IP and ICMP

Internet Protocol (IP) forwards individual packets

Packets have source and destination addresses,
other options

Automatic fragmentation (usually avoided)

ICMP (I Control Message P) adds errors, ping
packets, etc.



UDP

User Datagram Protocol: thin wrapper around IP

Adds source and destination port numbers (each
16-bit)

Still connectionless, unreliable

OK for some small messages

TCP

Transmission Control Protocol: provides reliable
bidirectional stream abstraction

Packets have sequence numbers, acknowledged in
order

Missed packets resent later

Flow and congestion control

Flow control: match speed to slowest link
“Window” limits number of packets sent but not ACKed

Congestion control: avoid traffic jams
Lost packets signal congestion
Additive increase, multiplicative decrease of rate

Routing

Where do I send this packet next?
Table from address ranges to next hops

Core Internet routers need big tables

Maintained by complex, insecure, cooperative
protocols

Internet-level algorithm: BGP (Border Gateway Protocol)

Below IP: ARP

Address Resolution Protocol maps IP addresses to
lower-level address

E.g., 48-bit Ethernet MAC address

Based on local-network broadcast packets

Complex Ethernets also need their own routing (but
called switches)

DNS

Domain Name System: map more memorable and
stable string names to IP addresses
Hierarchically administered namespace

Like Unix paths, but backwards

.edu server delegates to .umn.edu server, etc.

DNS caching and reverse DNS

To be practical, DNS requires caching
Of positive and negative results

But, cache lifetime limited for freshness

Also, reverse IP to name mapping
Based on special top-level domain, IP address written
backwards

Classic application: remote login

Killer app of early Internet: access supercomputers
at another university
Telnet: works cross-OS

Send character stream, run regular login program

rlogin: BSD Unix
Can authenticate based on trusting computer connection
comes from
(Also rsh, rcp)



Outline

Transient execution covert channels (cont’d)

OS trust and assurance

Announcements intermission

Brief introduction to networking

Some classic network attacks

Second half of course

Packet sniffing

Watch other people’s traffic as it goes by on network

Easiest on:
Old-style broadcast (thin, “hub”) Ethernet
Wireless

Or if you own the router

Forging packet sources

Source IP address not involved in routing, often not
checked

Change it to something else!

Might already be enough to fool a naive UDP
protocol

TCP spoofing

Forging source address only lets you talk, not listen

Old attack: wait until connection established, then
DoS one participant and send packets in their place
Frustrated by making TCP initial sequence numbers
unpredictable

But see Oakland’12, WOOT’12 for fancier attacks, keyword
“off-path”

ARP spoofing

Impersonate other hosts on local network level

Typical ARP implementations stateless, don’t mind
changes

Now you get victim’s traffic, can read, modify, resend

rlogin and reverse DNS

rlogin uses reverse DNS to see if originating host is
on whitelist

How can you attack this mechanism with an honest
source IP address?

rlogin and reverse DNS

rlogin uses reverse DNS to see if originating host is
on whitelist

How can you attack this mechanism with an honest
source IP address?

Remember, ownership of reverse-DNS is by IP
address

Outline

Transient execution covert channels (cont’d)

OS trust and assurance

Announcements intermission

Brief introduction to networking

Some classic network attacks

Second half of course



Cryptographic primitives

Core mathematical tools

Symmetric: block cipher, hash function, MAC

Public-key: encryption, signature

Some insights on how they work, but concentrating
on how to use them correctly

Cryptographic protocols

Sequence of messages and crypto privileges for,
e.g., key exchange

A lot can go wrong here, too

Also other ways security can fail even with a good
crypto primitive

Crypto in Internet protocols

How can we use crypto to secure network protocols

E.g., rsh ! ssh

Challenges of getting the right public keys

Fitting into existing usage ecosystems

Web security: server side

Web software is privileged and processes untrusted
data: what could go wrong?

Shell script injection (Ex. 1)

SQL injection

Cross-site scripting (XSS) and related problems

Web security: client side

JavaScript security environment even more tricky,
complex

More kinds of cross-site scripting

Possibilities for sandboxing

Security middleboxes

Firewall: block traffic according to security policy

NAT box: different original purpose, now de-facto
firewall

IDS (Intrusion Detection System): recognize possible
attacks

Malware and network DoS

Attacks made possible by the network

Viruses, trojans, bot nets
Detection?
Mitigation?

Distributed denial of service (DDoS)

Adding back privacy

Every Internet packet has source and destination
addresses on it

So how can network traffic be private or
anonymous?

Key technique: overlay a new network

Examples: onion routing (Tor), anonymous remailing



Usability of security

Prevent people from being the weakest link

Usability of authentication

“Secure” web sites, phishing

Making decisions about mobile apps

Electronic money (Bitcoin)

Current payment systems have strong centralized
trust

US Federal Reserve and mint
Banks, PayPal

Could they be replaced by a peer-to-peer distributed
system?

Maybe

Electronic voting

Challenging: hard versions of many hard problems:
Trust in software
Usability
Simultaneously public and private

Some deployed systems arguably worse than paper

Can do better with crypto and systems approaches

Next time

Symmetric crypto primitives


