
CSci 5271
Introduction to Computer Security

Capabilities, side channels, OS assurance
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Preview question
What’s “common” about the Common Criteria?
A. Every kind of product is evaluated against the same “protection

profile.”
B. Anyone can perform the certification, without special government

approval.
C. The certification applies to devices used in everyday civilian life,

rather than in government or the military.
D. A single certification is recognized by the governments of many

countries.
E. A single certification can be used for products from different

vendors.

Outline

Capability-based access control (cont’d)

Side and covert channel basics

Announcements intermission

Transient execution covert channels

OS trust and assurance

(Object) capabilities

A capability both designates a resource and
provides authority to access it
Similar to an object reference

Unforgeable, but can copy and distribute

Typically still managed by the kernel

Capability slogans (Miller et al.)

No designation without authority

Dynamic subject creation

Subject-aggregated authority management

No ambient authority

Composability of authorities

Access-controlled delegation

Dynamic resource creation

Partial example: Unix FDs

Authority to access a specific file

Managed by kernel on behalf of process

Can be passed between processes
Though rare other than parent to child

Unix not designed to use pervasively

Distinguish: password capabilities

Bit pattern itself is the capability
No centralized management

Modern example: authorization using cryptographic
certificates

Revocation with capabilities

Use indirection: give real capability via a pair of
middlemen

A! B via A! F! R! B

Retain capability to tell R to drop capability to B

Depends on composability

Confinement with capabilities

A cannot pass a capability to B if it cannot
communicate with A at all

Disconnected parts of the capability graph cannot be
reconnected

Depends on controlled delegation and data/capability
distinction

OKL4 and seL4

Commercial and research microkernels

Recent versions of OKL4 use capability design from
seL4

Used as a hypervisor, e.g. underneath paravirtualized
Linux

Shipped on over 1 billion cell phones

Joe-E and Caja

Dialects of Java and JavaScript (resp.) using
capabilities for confined execution

E.g., of JavaScript in an advertisement

Note reliance on Java and JavaScript type safety

Outline

Capability-based access control (cont’d)

Side and covert channel basics

Announcements intermission

Transient execution covert channels

OS trust and assurance

More confidentiality problems

Careful access control prevents secret data from
“leaking” though normal OS-mediated
communication channels

Residual problem: channels not designed for
communication

A major theme of ongoing computer security
research

Side channel vs. covert channel

Side channel: information leaks from an
unsuspecting victim
Covert channel: information intentionally leaked by a
adversarial sender

Violating an isolation property
Sender and receiver work together

Distinction sometimes unclear or not observed

Kinds of channels

Software channels: undesired feature of program
behaviors

Physical channels: channels mediated by the real
world

Hardware channels: undesired feature of hardware
behaviors

Classic software covert channels

Storage channel: writable shared state
E.g., screen brightness on mobile phone

Timing channel: speed or ordering of events
E.g., deliberately consume CPU time

Remote timing and traffic analysis

Timing of events can also leak over the network
Classic example: time taken to process encrypted data

Encrypted network traffic still reveals information via
pattern and timing of packets

Classic example: keystrokes over SSH
Modern: “website fingerprinting” against HTTPS and Tor

Examples of physical side channels

EM emissions and diffuse reflections from CRTs

Power usage of computers and smart cards

Smartphone accelerometer picks up speaker
vibrations

Common hardware channel: cache timing

Memory cache shared by processes and sometimes
cores

Cache state depends on pattern of previous
accesses

Cache hit or miss affects code execution speed

Outline

Capability-based access control (cont’d)

Side and covert channel basics

Announcements intermission

Transient execution covert channels

OS trust and assurance

Multiple BCMTA vulnerabilities found!

Format string vulnerability in logging

Race condition on file ownership check

Instruction whitelist was too permissive

Midterm exam next Monday

Usual class time and location

Covers up through today’s lecture material

Mix of short-answer and exercise-like questions

Open books/notes/printouts, no computers or other
electronics

Sample exams (2013-2019) posted, solutions
Wednesday

Exercise set 2

Due Wednesday evening

Join pre-created groups in Canvas

Remember to cite any outside sources you used

May not be graded before midterm, so ask
questions early

Reversing the stack

void func(char *str) {

char buf[128];

strcpy(buf, str);

do_something();

return;

}

Payment app

void payment(char *name, double amount_jpy,

char *purpose, int purpose_len) {

double amount_usd = amount_jpy / 109.23;

char memo[32];

strcpy(memo, "Payment for: ");

memcpy(memo + strlen(memo), purpose, purpose_len);

write_check(name, amount_usd, memo);

}

Reverse range

void reverse_range(int *a, int from, int to) {

unsigned int *p = &a[from];

unsigned int *q = &a[to];

while (!(p == q + 1 || p == q + 2)) {

*p += *q;

*q = *p - *q;

*p = *p - *q;

p++; q--;

}

}

Outline

Capability-based access control (cont’d)

Side and covert channel basics

Announcements intermission

Transient execution covert channels

OS trust and assurance

Outline

Capability-based access control (cont’d)

Side and covert channel basics

Announcements intermission

Transient execution covert channels

OS trust and assurance

Trusted and trustworthy

Part of your system is trusted if its failure can break
your security

Thus, OS is almost always trusted

Real question: is it trustworthy?

Distinction not universally observed: trusted boot,
Trusted Solaris, etc.

Trusted (I/O) path

How do you know you’re talking to the right
software?

And no one is sniffing the data?

Example: Trojan login screen
Or worse: unlock screensaver with root password
Origin of “Press Ctrl-Alt-Del to log in”

Minimizing trust

Kernel ! microkernel ! nanokernel

Reference monitor concept

TCB size: measured relative to a policy goal

Reference monitor � TCB
But hard to build monitor for all goals

How to gain assurance

Use for a long time

Testing

Code / design review

Third-party certification

Formal methods / proof

Evaluation / certification

Testing and review performed by an independent
party

Goal: separate incentives, separate accountability

Compare with financial auditing

Watch out for: form over substance, misplaced
incentives

Orange book OS evaluation

Trusted Computer System Evaluation Criteria

D. Minimal protection
C. Discretionary protection

C2 adds, e.g., secure audit over C1
B. Mandatory protection

B1<B2<B3: stricter classic MLS

A. Verified protection

Common Criteria

International standard and agreement for IT security
certification

Certification against a protection profile, and
evaluation assurance level EAL 1-7

Evaluation performed by non-government labs

Up to EAL 4 automatically cross-recognized

Common Criteria, Anderson’s view

Many profiles don’t specify the right things

OSes evaluated only in unrealistic environments
E.g., unpatched Windows XP with no network attacks

“Corruption, Manipulation, and Inertia”
Pernicious innovation: evaluation paid for by vendor
Labs beholden to national security apparatus

Formal methods and proof

Can math come to the rescue?

Checking design vs. implementation

Automation possible only with other tradeoffs
E.g., bounded size model

Starting to become possible: machine-checked proof

Proof and complexity

Formal proof is only feasible for programs that are
small and elegant

If you honestly care about assurance, you want your
TCB small and elegant anyway

Should provability further guide design?

Some hopeful proof results

seL4 microkernel (SOSP’09 and ongoing)
7.5 kL C, 200 kL proof, 160 bugs fixed, 25 person years

CompCert C-subset compiler (PLDI’06 and ongoing)

RockSalt SFI verifier (PLDI’12)

