
CSci 5271
Introduction to Computer Security

OS security: access control
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

OS security: authentication, cont’d

Basics of access control

Announcements intermission

Unix-style access control

Multilevel and mandatory access control

Capability-based access control

Passwords: love to hate

Many problems for users, sysadmins, researchers

But familiar and near-zero cost of entry

User-chosen passwords proliferate for low-stakes
web site authentication

Password entropy

Model password choice as probabilistic process

If uniform, log2 jSj

Controls difficulty of guessing attacks

Hard to estimate for user-chosen passwords
Length is an imperfect proxy

Password hashing

Idea: don’t store password or equivalent information

Password ‘encryption’ is a long-standing misnomer
E.g., Unix crypt(3)

Presumably hard-to-invert function h

Store only h(p)

Dictionary attacks

Online: send guesses to server

Offline: attacker can check guesses internally

Specialized password lists more effective than literal
dictionaries

Also generation algorithms (s ! $, etc.)

�25% of passwords consistently vulnerable

Better password hashing

Generate random salt s, store (s; h(s; p))

Block pre-computed tables and equality inferences
Salt must also have enough entropy

Deliberately expensive hash function
AKA password-based key derivation function (PBKDF)
Requirement for time and/or space

Backup authentication

Desire: unassisted recovery from forgotten password

Fall back to other presumed-authentic channel
Email, cell phone

Harder to forget (but less secret) shared information
Mother’s maiden name, first pet’s name

Brittle: ask Sarah Palin or Mat Honan



Centralized authentication

Enterprise-wide (e.g., UMN ID)

Anderson: Microsoft Passport

Today: Facebook Connect, Google ID

May or may not be single-sign-on (SSO)

Biometric authentication

Authenticate by a physical body attribute

+ Hard to lose

- Hard to reset

- Inherently statistical

- Variation among people

Example biometrics

(Handwritten) signatures

Fingerprints, hand geometry

Face and voice recognition

Iris codes

Error rates: ROC curve

Outline

OS security: authentication, cont’d

Basics of access control

Announcements intermission

Unix-style access control

Multilevel and mandatory access control

Capability-based access control

Mechanism and policy

Decision-making aspect of OS

Should subject S (user or process) be allowed to
access object (e.g., file) O?

Complex, since admin must specify what should
happen

Access control matrix

grades.txt /dev/hda /usr/bin/bcvi
Alice r rw rx
Bob rw - rx

Carol r - rx

Slicing the matrix

O(nm) matrix impractical to store, much less
administer
Columns: access control list (ACL)

Convenient to store with object
E.g., Unix file permissions

Rows: capabilities
Convenient to store by subject
E.g., Unix file descriptors



Groups/roles

Simplify by factoring out commonality

Before: users have permissions

After: users have roles, roles have permissions

Simple example: Unix groups

Complex versions called role-based access control
(RBAC)

Outline

OS security: authentication, cont’d

Basics of access control

Announcements intermission

Unix-style access control

Multilevel and mandatory access control

Capability-based access control

Multiple BCMTA vulnerabilities found!

Buffer overrun in term copy

Buffer overrun in constructing the .forward file
location

Writing message to file allowed write to system file

accelerated strcpy was less secure

Changes coming in BCMTA 2.3

Avoid unneeded buffer in term copy

Use strlcpy when constructing .forward file
location

Check ownership of delivery file

Remove optimizations

One more delivery feature

Release planned for this evening

Outline

OS security: authentication, cont’d

Basics of access control

Announcements intermission

Unix-style access control

Multilevel and mandatory access control

Capability-based access control

UIDs and GIDs

To kernel, users and groups are just numeric
identifiers
Names are a user-space nicety

E.g., /etc/passwd mapping

Historically 16-bit, now 32

User 0 is the special superuser root
Exempt from all access control checks

File mode bits

Core permissions are 9 bits, three groups of three

Read, write, execute for user, group, other

ls format: rwx r-x r--

Octal format: 0754

Interpretation of mode bits

File also has one user and group ID

Choose one set of bits
If users match, use user bits
If subject is in the group, use group bits
Otherwise, use other bits

Note no fallback, so can stop yourself or have
negative groups

But usually, O � G � U



Directory mode bits

Same bits, slightly different interpretation

Read: list contents (e.g., ls)

Write: add or delete files

Execute: traverse

X but not R means: have to know the names

Process UIDs and setuid(2)

UID is inherited by child processes, and an
unprivileged process can’t change it

But there are syscalls root can use to change the
UID, starting with setuid

E.g., login program, SSH server

Setuid programs, different UIDs

If 04000 “setuid” bit set, newly exec’d process will
take UID of its file owner

Other side conditions, like process not traced

Specifically the effective UID is changed, while the
real UID is unchanged

Shows who called you, allows switching back

More different UIDs

Two mechanisms for temporary switching:
Swap real UID and effective UID (BSD)
Remember saved UID, allow switching to it (System V)

Modern systems support both mechanisms at the
same time
Linux only: file-system UID

Once used for NFS servers, now mostly obsolete

Setgid, games

Setgid bit 02000 mostly analogous to setuid

But note no supergroup, so UID 0 is still special

Classic application: setgid games for managing
high-score files

Special case: /tmp

We’d like to allow anyone to make files in /tmp

So, everyone should have write permission

But don’t want Alice deleting Bob’s files

Solution: “sticky bit” 01000

Special case: group inheritance

When using group to manage permissions, want a
whole tree to have a single group
When 02000 bit set, newly created entries with
have the parent’s group

(Historic BSD behavior)

Also, directories will themselves inherit 02000

Other permission rules

Only file owner or root can change permissions

Only root can change file owner
Former System V behavior: “give away chown”

Setuid/gid bits cleared on chown

Set owner first, then enable setuid



Non-checks

File permissions on stat

File permissions on link, unlink, rename

File permissions on read, write

Parent directory permissions generally
Except traversal
I.e., permissions not automatically recursive

“POSIX” ACLs

Based on a withdrawn standardization

More flexible permissions, still fairly Unix-like

Multiple user and group entries
Decision still based on one entry

Default ACLs: generalize group inheritance

Command line: getfacl, setfacl

ACL legacy interactions

Hard problem: don’t break security of legacy code
Suggests: “fail closed”

Contrary pressure: don’t want to break functionality
Suggests: “fail open”

POSIX ACL design: old group permission bits are a
mask on all novel permissions

“POSIX” “capabilities”

Divide root privilege into smaller (�35) pieces

Note: not real capabilities

First runtime only, then added to FS similar to setuid

Motivating example: ping

Also allows permanent disabling

Privilege escalation dangers

Many pieces of the root privilege are enough to
regain the whole thing

Access to files as UID 0
CAP DAC OVERRIDE

CAP FOWNER

CAP SYS MODULE

CAP MKNOD

CAP PTRACE

CAP SYS ADMIN (mount)

Legacy interaction dangers

Former bug: take away capability to drop privileges

Use of temporary files by no-longer setuid programs

For more details: “Exploiting capabilities”, Emeric Nasi

Outline

OS security: authentication, cont’d

Basics of access control

Announcements intermission

Unix-style access control

Multilevel and mandatory access control

Capability-based access control

MAC vs. DAC

Discretionary access control (DAC)
Users mostly decide permissions on their own files
If you have information, you can pass it on to anyone
E.g., traditional Unix file permissions

Mandatory access control (MAC)
Restrictions enforced regardless of subject choices
Typically specified by an administrator



Motivation: it’s classified

Government defense and intelligence agencies use
classification to restrict access to information

E.g.: Unclassified, Confidential, Secret, Top Secret

Multilevel Secure (MLS) systems first developed to
support mixing classification levels under timesharing

Motivation: system integrity

Limit damage if a network server application is
compromised

Unix DAC is no help if server is root

Limit damage from browser-downloaded malware
Windows DAC is no help if browser is “administrator” user

Bell-LaPadula, linear case

State-machine-like model developed for US DoD in
1970s

1. A subject at one level may not read a resource at a
higher level

Simple security property, “no read up”
2. A subject at one level may not write a resource at a

lower level
* property, “no write down”

High watermark property

Dynamic implementation of BLP

Process has security level equal to highest file read

Written files inherit this level

Biba and low watermark

Inverting a confidentiality policy gives an integrity
one

Biba: no write up, no read down

Low watermark policy

BLP ^ Biba ) levels are isolated

Information-flow perspective

Confidentiality: secret data should not flow to public
sinks

Integrity: untrusted data should not flow to critical
sinks

Watermark policies are process-level conservative
abstractions

Covert channels

Problem: conspiring parties can misuse other
mechanisms to transmit information
Storage channel: writable shared state

E.g., screen brightness on mobile phone

Timing channel: speed or ordering of events
E.g., deliberately consume CPU time

Multilateral security / compartments

In classification, want finer divisions based on
need-to-know

Also, selected wider sharing (e.g., with allied nations)

Many other applications also have this character
Anderson’s example: medical data

How to adapt BLP-style MAC?



Partial orders and lattices

� on integers is a total order
Reflexive, antisymmetric, transitive, a � b or b � a

Dropping last gives a partial order

A lattice is a partial order plus operators for:
Least upper bound or join t
Greatest lower bound or meet u

Example: subsets with �, [, \

Subset lattice example

Subset lattice example Lattice model

Generalize MLS levels to elements in a lattice

BLP and Biba work analogously with lattice ordering

No access to incomparable levels

Potential problem: combinatorial explosion of
compartments

Classification lattice example Lattice BLP example

Another notation

Faculty
! (Faculty, ?)

Faculty//5271
! (Faculty, f5271g)

Faculty//5271//8271
! (Faculty, f5271; 8271g)

MLS operating systems

1970s timesharing, including Multics

“Trusted” versions of commercial Unix (e.g. Solaris)

SELinux (called “type enforcement”)

Integrity protections in Windows Vista and later



Multi-VM systems

One (e.g., Windows) VM for each security level

More trustworthy OS underneath provides limited
interaction

E.g., NSA NetTop: VMWare on SELinux

Downside: administrative overhead

Air gaps, pumps, and diodes

The lack of a connection between networks of
different levels is called an air gap

A pump transfers data securely from one network to
another

A data diode allows information flow in only one
direction

Chelsea Manning cables leak

Manning (née Bradley) was an intelligence analyst
deployed to Iraq

PC in a T-SCIF connected to SIPRNet (Secret), air
gapped

CD-RWs used for backup and software transfer

Contrary to policy: taking such a CD-RW home in
your pocket http://www.fas.org/sgp/jud/manning/022813-statement.pdf

Outline

OS security: authentication, cont’d

Basics of access control

Announcements intermission

Unix-style access control

Multilevel and mandatory access control

Capability-based access control

ACLs: no fine-grained subjects

Subjects are a list of usernames maintained by a
sysadmin

Unusual to have a separate subject for an application

Cannot easily subset access (sandbox)

ACLs: ambient authority

All authority exists by virtue of identity

Kernel automatically applies all available authority

Authority applied incorrectly leads to attacks

Confused deputy problem

Compiler writes to billing database

Compiler can produce debug output to
user-specified file

Specify debug output to billing file, disrupt billing

(Object) capabilities

A capability both designates a resource and
provides authority to access it
Similar to an object reference

Unforgeable, but can copy and distribute

Typically still managed by the kernel



Capability slogans (Miller et al.)

No designation without authority

Dynamic subject creation

Subject-aggregated authority mgmt.

No ambient authority

Composability of authorities

Access-controlled delegation

Dynamic resource creation

Partial example: Unix FDs

Authority to access a specific file

Managed by kernel on behalf of process

Can be passed between processes
Though rare other than parent to child

Unix not designed to use pervasively

Distinguish: password capabilities

Bit pattern itself is the capability
No centralized management

Modern example: authorization using cryptographic
certificates

Revocation with capabilities

Use indirection: give real capability via a pair of
middlemen

A! B via A! F! R! B

Retain capability to tell R to drop capability to B

Depends on composability

Confinement with capabilities

A cannot pass a capability to B if it cannot
communicate with A at all

Disconnected parts of the capability graph cannot be
reconnected

Depends on controlled delegation and data/capability
distinction

OKL4 and seL4

Commercial and research microkernels

Recent versions of OKL4 use capability design from
seL4

Used as a hypervisor, e.g. underneath paravirtualized
Linux

Shipped on over 1 billion cell phones

Joe-E and Caja

Dialects of Java and JavaScript (resp.) using
capabilities for confined execution

E.g., of JavaScript in an advertisement

Note reliance on Java and JavaScript type safety

Next time

Techniques for higher assurance


