Outline

Unix-style access control, contd
CSci 5271
Introduction to Computer Security
Access control, contd

Stephen McCamant
University of Minnesota, Computer Science & Engineering

"POSIX" ACLs ACL legacy interactions
© Based on a withdrawn standardization ) Hard problem: don't break security of legacy code
£) More flexible permissions, still fairly Unix-like ® Suggests: “fail closed”
©) Multiple user and group entries ©) Contrary pressure: don't want to break functionality

® Decision still based on one entry ® Suggests: “fail open”

) Default ACLs: generalize group inheritance £ POSIX ACL design: old group permission bits are a

£ Command line: getfacl, setfacl mask on all novel permissions

"POSIX” “capabilities” Privilege escalation dangers
£) Many pieces of the root privilege are enough to
) Divide root privilege into smaller (~35) pieces regain the whole thing
© Note: not real capabilities ® Access to files as UID O
CAP DAC_QVERRIDE
) First runtime only, then added to FS similar to setuid :jc AP FOWNER
©) Motivating example: ping ® CAP_SYS_MODULE
. . ® CAP_MKNOD

©) Also allows permanent disabling ® CAP_PTRACE

® CAP_SYS_ADMIN (mount)

Legacy interaction dangers Outline

) Former bug: take away capability to drop privileges Multilevel and mandatory access control

) Use of temporary files by no-longer setuid programs
©) For more details: “Exploiting capabilities”, Emeric Nasi




MAC vs. DAC

) Discretionary access control (DAC)
® Users mostly decide permissions on their own files
® If you have information, you can pass it on to anyone
® Eg, traditional Unix file permissions

£) Mandatory access control (MAC)

® Restrictions enforced regardless of subject choices
® Typically specified by an administrator

Motivation: it's classified

£) Government defense and intelligence agencies use
classification to restrict access to information

£) Eg. Unclassified, Confidential, Secret, Top Secret

£) Multilevel Secure (MLS) systems first developed to
support mixing classification levels under timesharing

Motivation: system integrity

o) Limit damage if a network server application is
compromised
® Unix DAC is no help if server is root
©) Limit damage from browser-downloaded malware
® Windows DAC is no help if browser is “administrator” user

Bell-LaPadula, linear case

) State-machine-like model developed for US DoD in
1970s
1. A subject at one level may not read a resource at a
higher level
® Simple security property, “no read up”
2. A subject at one level may not write a resource at a
lower level
® * property, “no write down”

High watermark property

©) Dynamic implementation of BLP
©) Process has security level equal to highest file read
£) Written files inherit this level

Biba and low watermark

£ Inverting a confidentiality policy gives an integrity
one

£) Biba: no write up, no read down

©) Low watermark policy

£) BLP A Biba = levels are isolated

Information-flow perspective

©) Confidentiality: secret data should not flow to public
sinks

©) Integrity: untrusted data should not flow to critical
sinks

©) Watermark policies are process-level conservative
abstractions

Multilateral security / compartments

£) In classification, want finer divisions based on
need-to-know
£) Also, selected wider sharing (e.g., with allied nations)

£) Many other applications also have this character
® Anderson’s example: medical data

£) How to adapt BLP-style MAC?




Partial orders and lattices

£) < on integers is a total order
® Reflexive, antisymmetric, transitive, a <borb < a
) Dropping last gives a partial order

©) A lattice is a partial order plus operators for:

® Least upper bound or join LI
® Greatest lower bound or meet 11

©) Example: subsets with C, U, N

Subset lattice example
{1, 2,3}

{1, 2} {2, 3} {1, 3}

N Ny

{1} {2} {3}

@

Subset lattice example

{1, 2, 3}
{1, 3} \ {2, 3}

Y

Lattice model

£) Generalize MLS levels to elements in a lattice
£) BLP and Biba work analogously with lattice ordering
©) No access to incomparable levels

£) Potential problem: combinatorial explosion of
compartments

Classification lattice example

Faculty//5271/18271

wity//8271

TAI/5271/18271

ent//8271

Student

Lattice BLP example

Faculty//5271//8271
]

wity//8271

TAII5271//8271
W

Another notation

Faculty

— (Faculty, @)
Faculty//52T1

— (Faculty, {5271})
Faculty//5271//82T1

— (Faculty, {5271, 8271})

MLS operating systems

£) 1970s timesharing, including Multics

£) "Trusted” versions of commercial Unix (e.g. Solaris)
£) SELinux (called “type enforcement”)

) Integrity protections in Windows Vista and later




Multi-VM systems

©) One (eg., Windows) VM for each security level

) More trustworthy OS underneath provides limited
interaction

) E.g, NSA NetTop: VMWare on SELinux
©) Downside: administrative overhead

Air gaps, pumps, and diodes

£) The lack of a connection between networks of
different levels is called an air gap

©) A pump transfers data securely from one network to
another

£) A data diode allows information flow in only one
direction

Chelsea Manning cables leak

©) Manning (née Bradley) was an intelligence analyst
deployed to Iraq

) PC in a T-SCIF connected to SIPRNet (Secret), air
gapped

) CD-RWs used for backup and software transfer

) Contrary to policy: taking such a CD-RW home in
YOUr POCKEYL netp: //uww.tas .org/sgps jud/manning/022615-statenent pas

Outline

Announcements intermission

HA1 week 4

©) Both 0S/logic and memory safety bugs still exist
©) Remaining ones are complex for various reasons
©) Also this week: design analysis and suggestions

Exercise set 2

£) Posted this morning, due next Wednesday
£) Covers defensive programming and OS security
£ Indicate your groups in Canvas

Project progress

©) Individual progress reports due tonight
©) Next meetings later in October

Outline

Capability-based access control




ACLs: no fine-grained subjects

©) Subjects are a list of usernames maintained by a
sysadmin

©) Unusual to have a separate subject for an application

£) Cannot easily subset access (sandbox)

ACLs: ambient authority

©) All authority exists by virtue of identity
©) Kernel automatically applies all available authority
©) Authority applied incorrectly leads to attacks

Confused deputy problem

) Compiler writes to billing database

) Compiler can produce debug output to
user-specified file

) Specify debug output to billing file, disrupt billing

(Object) capabilities

©) A capability both designates a resource and
provides authority to access it
£) Similar to an object reference
® Unforgeable, but can copy and distribute

©) Typically still managed by the kernel

Capability slogans (Miller et al))

©) No designation without authority

©) Dynamic subject creation

£) Subject-aggregated authority mgmt.
©) No ambient authority

£) Composability of authorities

£) Access-controlled delegation

£) Dynamic resource creation

Partial example: Unix FDs

©) Authority to access a specific file
£) Managed by kernel on behalf of process

£) Can be passed between processes
® Though rare other than parent to child

£ Unix not designed to use pervasively

Distinquish: password capabilities

©) Bit pattern itself is the capability
® No centralized management
£) Modern example: authorization using cryptographic
certificates

Revocation with capabilities

£) Use indirection: give real capability via a pair of
middlemen

HDA—->BviaA—-F—-R—B

£) Retain capability to tell R to drop capability to B

£) Depends on composability




Confinement with capabilities

£) A cannot pass a capability to B if it cannot
communicate with A at all

©) Disconnected parts of the capability graph cannot be
reconnected

©) Depends on controlled delegation and data/capability
distinction

OKL4 and selL4

£) Commercial and research microkernels
£) Recent versions of OKL4 use capability design from
selL4

£) Used as a hypervisor, eg. underneath paravirtualized
Linux

£) Shipped on over 1 billion cell phones

Joe-E and Caja

©) Dialects of Java and JavaScript (resp.) using
capabilities for confined execution

o) Eqg., of JavaScript in an advertisement
©) Note reliance on Java and JavaScript type safety

Outline

Side and covert channel basics

More confidentiality problems

) Careful access control prevents secret data from
“leaking” though normal OS-mediated
communication channels

©) Residual problem: channels not designed for
communication

©) A major theme of ongoing computer security
research

Side channel vs. covert channel

©) Side channel: information leaks from an
unsuspecting victim

£) Covert channel: information intentionally leaked by a
adversarial sender

® Violating an isolation property
® Sender and receiver work together

£) Distinction sometimes unclear or not observed

Kinds of channels

) Software channels: undesired feature of program
behaviors

) Physical channels: channels mediated by the real
world

©) Hardware channels: undesired feature of hardware
behaviors

Classic software covert channels

£) Storage channel: writable shared state
® Eg, screen brightness on mobile phone

£ Timing channel: speed or ordering of events
® Eg, deliberately consume CPU time




Remote timing and traffic analysis

©) Timing of events can also leak over the network
® Classic example: time taken to process encrypted data
©) Encrypted network traffic still reveals information via
pattern and timing of packets

® Classic example: keystrokes over SSH
® Modern: “website fingerprinting” against HTTPS and Tor

Examples of physical side channels

£) EM emissions and diffuse reflections from CRTs
£) Power usage of computers and smart cards

£) Smartphone accelerometer picks up speaker
vibrations




