
CSci 5271
Introduction to Computer Security

Access control, cont’d
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Unix-style access control, cont’d

Multilevel and mandatory access control

Announcements intermission

Capability-based access control

Side and covert channel basics

“POSIX” ACLs

Based on a withdrawn standardization

More flexible permissions, still fairly Unix-like

Multiple user and group entries
Decision still based on one entry

Default ACLs: generalize group inheritance

Command line: getfacl, setfacl

ACL legacy interactions

Hard problem: don’t break security of legacy code
Suggests: “fail closed”

Contrary pressure: don’t want to break functionality
Suggests: “fail open”

POSIX ACL design: old group permission bits are a
mask on all novel permissions

“POSIX” “capabilities”

Divide root privilege into smaller (�35) pieces

Note: not real capabilities

First runtime only, then added to FS similar to setuid

Motivating example: ping

Also allows permanent disabling

Privilege escalation dangers

Many pieces of the root privilege are enough to
regain the whole thing

Access to files as UID 0
CAP DAC OVERRIDE

CAP FOWNER

CAP SYS MODULE

CAP MKNOD

CAP PTRACE

CAP SYS ADMIN (mount)

Legacy interaction dangers

Former bug: take away capability to drop privileges

Use of temporary files by no-longer setuid programs

For more details: “Exploiting capabilities”, Emeric Nasi

Outline

Unix-style access control, cont’d

Multilevel and mandatory access control

Announcements intermission

Capability-based access control

Side and covert channel basics



MAC vs. DAC

Discretionary access control (DAC)
Users mostly decide permissions on their own files
If you have information, you can pass it on to anyone
E.g., traditional Unix file permissions

Mandatory access control (MAC)
Restrictions enforced regardless of subject choices
Typically specified by an administrator

Motivation: it’s classified

Government defense and intelligence agencies use
classification to restrict access to information

E.g.: Unclassified, Confidential, Secret, Top Secret

Multilevel Secure (MLS) systems first developed to
support mixing classification levels under timesharing

Motivation: system integrity

Limit damage if a network server application is
compromised

Unix DAC is no help if server is root

Limit damage from browser-downloaded malware
Windows DAC is no help if browser is “administrator” user

Bell-LaPadula, linear case

State-machine-like model developed for US DoD in
1970s

1. A subject at one level may not read a resource at a
higher level

Simple security property, “no read up”
2. A subject at one level may not write a resource at a

lower level
* property, “no write down”

High watermark property

Dynamic implementation of BLP

Process has security level equal to highest file read

Written files inherit this level

Biba and low watermark

Inverting a confidentiality policy gives an integrity
one

Biba: no write up, no read down

Low watermark policy

BLP ^ Biba ) levels are isolated

Information-flow perspective

Confidentiality: secret data should not flow to public
sinks

Integrity: untrusted data should not flow to critical
sinks

Watermark policies are process-level conservative
abstractions

Multilateral security / compartments

In classification, want finer divisions based on
need-to-know

Also, selected wider sharing (e.g., with allied nations)

Many other applications also have this character
Anderson’s example: medical data

How to adapt BLP-style MAC?



Partial orders and lattices

� on integers is a total order
Reflexive, antisymmetric, transitive, a � b or b � a

Dropping last gives a partial order

A lattice is a partial order plus operators for:
Least upper bound or join t
Greatest lower bound or meet u

Example: subsets with �, [, \

Subset lattice example

Subset lattice example Lattice model

Generalize MLS levels to elements in a lattice

BLP and Biba work analogously with lattice ordering

No access to incomparable levels

Potential problem: combinatorial explosion of
compartments

Classification lattice example Lattice BLP example

Another notation

Faculty
! (Faculty, ?)

Faculty//5271
! (Faculty, f5271g)

Faculty//5271//8271
! (Faculty, f5271; 8271g)

MLS operating systems

1970s timesharing, including Multics

“Trusted” versions of commercial Unix (e.g. Solaris)

SELinux (called “type enforcement”)

Integrity protections in Windows Vista and later



Multi-VM systems

One (e.g., Windows) VM for each security level

More trustworthy OS underneath provides limited
interaction

E.g., NSA NetTop: VMWare on SELinux

Downside: administrative overhead

Air gaps, pumps, and diodes

The lack of a connection between networks of
different levels is called an air gap

A pump transfers data securely from one network to
another

A data diode allows information flow in only one
direction

Chelsea Manning cables leak

Manning (née Bradley) was an intelligence analyst
deployed to Iraq

PC in a T-SCIF connected to SIPRNet (Secret), air
gapped

CD-RWs used for backup and software transfer

Contrary to policy: taking such a CD-RW home in
your pocket http://www.fas.org/sgp/jud/manning/022813-statement.pdf

Outline

Unix-style access control, cont’d

Multilevel and mandatory access control

Announcements intermission

Capability-based access control

Side and covert channel basics

HA1 week 4

Both OS/logic and memory safety bugs still exist

Remaining ones are complex for various reasons

Also this week: design analysis and suggestions

Exercise set 2

Posted this morning, due next Wednesday

Covers defensive programming and OS security

Indicate your groups in Canvas

Project progress

Individual progress reports due tonight

Next meetings later in October

Outline

Unix-style access control, cont’d

Multilevel and mandatory access control

Announcements intermission

Capability-based access control

Side and covert channel basics



ACLs: no fine-grained subjects

Subjects are a list of usernames maintained by a
sysadmin

Unusual to have a separate subject for an application

Cannot easily subset access (sandbox)

ACLs: ambient authority

All authority exists by virtue of identity

Kernel automatically applies all available authority

Authority applied incorrectly leads to attacks

Confused deputy problem

Compiler writes to billing database

Compiler can produce debug output to
user-specified file

Specify debug output to billing file, disrupt billing

(Object) capabilities

A capability both designates a resource and
provides authority to access it
Similar to an object reference

Unforgeable, but can copy and distribute

Typically still managed by the kernel

Capability slogans (Miller et al.)

No designation without authority

Dynamic subject creation

Subject-aggregated authority mgmt.

No ambient authority

Composability of authorities

Access-controlled delegation

Dynamic resource creation

Partial example: Unix FDs

Authority to access a specific file

Managed by kernel on behalf of process

Can be passed between processes
Though rare other than parent to child

Unix not designed to use pervasively

Distinguish: password capabilities

Bit pattern itself is the capability
No centralized management

Modern example: authorization using cryptographic
certificates

Revocation with capabilities

Use indirection: give real capability via a pair of
middlemen

A! B via A! F! R! B

Retain capability to tell R to drop capability to B

Depends on composability



Confinement with capabilities

A cannot pass a capability to B if it cannot
communicate with A at all

Disconnected parts of the capability graph cannot be
reconnected

Depends on controlled delegation and data/capability
distinction

OKL4 and seL4

Commercial and research microkernels

Recent versions of OKL4 use capability design from
seL4

Used as a hypervisor, e.g. underneath paravirtualized
Linux

Shipped on over 1 billion cell phones

Joe-E and Caja

Dialects of Java and JavaScript (resp.) using
capabilities for confined execution

E.g., of JavaScript in an advertisement

Note reliance on Java and JavaScript type safety

Outline

Unix-style access control, cont’d

Multilevel and mandatory access control

Announcements intermission

Capability-based access control

Side and covert channel basics

More confidentiality problems

Careful access control prevents secret data from
“leaking” though normal OS-mediated
communication channels

Residual problem: channels not designed for
communication

A major theme of ongoing computer security
research

Side channel vs. covert channel

Side channel: information leaks from an
unsuspecting victim
Covert channel: information intentionally leaked by a
adversarial sender

Violating an isolation property
Sender and receiver work together

Distinction sometimes unclear or not observed

Kinds of channels

Software channels: undesired feature of program
behaviors

Physical channels: channels mediated by the real
world

Hardware channels: undesired feature of hardware
behaviors

Classic software covert channels

Storage channel: writable shared state
E.g., screen brightness on mobile phone

Timing channel: speed or ordering of events
E.g., deliberately consume CPU time



Remote timing and traffic analysis

Timing of events can also leak over the network
Classic example: time taken to process encrypted data

Encrypted network traffic still reveals information via
pattern and timing of packets

Classic example: keystrokes over SSH
Modern: “website fingerprinting” against HTTPS and Tor

Examples of physical side channels

EM emissions and diffuse reflections from CRTs

Power usage of computers and smart cards

Smartphone accelerometer picks up speaker
vibrations


