CSci 5271 Introduction to Computer Security Day 5: Low-level defenses and counterattacks

Stephen McCamant University of Minnesota, Computer Science & Engineering

Outline

Return address protections

Announcements intermission

ASLR and counterattacks

W⊕X (DEP)

Backwards overflows

- Function pointers
- Adjacent structure fields
- Adjacent static data objects

Where to keep canary value

- Fast to access
- Buggy code/attacker can't read or write
- **5 Linux/x86**: %gs:0x14

Complex anti-canary attack

Canary not updated on fork in server
Attacker controls number of bytes overwritten

Complex anti-canary attack

Canary not updated on fork in server
 Attacker controls number of bytes overwritten
 ANRY BNRY CNRY DNRY ENRY FNRY
 Search 2³² → search 4 · 2⁸

Shadow return stack

Suppose you have a safe place to store the canary
Why not just store the return address there?

- Needs to be a separate stack
- Ultimate return address protection

Outline

Return address protections

Announcements intermission

ASLR and counterattacks

W⊕X (DEP)

Note to early readers

- This is the section of the slides most likely to change in the final version
- If class has already happened, make sure you have the latest slides for announcements

Outline

Return address protections

Announcements intermission

ASLR and counterattacks

W⊕X (DEP)

Basic idea

"Address Space Layout Randomization"
 Move memory areas around randomly so attackers can't predict addresses
 Keep internal structure unchanged

 E.g., whole stack moves together

Code and data locations Execution of code depends on memory location E.g., on 32-bit x86: Direct jumps are relative Function pointers are absolute Data must be absolute

Relocation (Windows) Extension of technique already used in compilation Keep table of absolute addresses, instructions on how to update Disadvantage: code modifications take time on load, prevent sharing

Entropy limitations

- Intuitively, entropy measures amount of randomness, in bits
- Random 32-bit int: 32 bits of entropy
- ASLR page aligned, so at most 32 12 = 20 bits of entropy
- Other constraints further reduce possibilities

GOT hijack (Müller)	
printf@plt: jm	p *0x8049678
system@plt: jm	p *0x804967c
 0x8049678: <addr o<br="">0x804967c: <addr o<="" td=""><td>f printf in libc> f system in libc></td></addr></addr>	f printf in libc> f system in libc>

One bit controls both read and execute

Partial stop-gap "code segment limit"

Eventual obvious solution: add new bit NX (AMD), XD (Intel), XN (ARM)

 Incompatible with some GCC features no one uses
 Non-executable stack opt-in on Linux, but now near-universal

Beyond return-to-libc

- Can we do more? Oh, yes.
- Classic academic approach: what's the most we could ask for?
- Here: "Turing completeness"
- How to do it: reading for Thursday

