
CSci 5271
Introduction to Computer Security

Day 5: Low-level defenses and counterattacks
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Return address protections

Announcements intermission

ASLR and counterattacks

W�X (DEP)

Canary in the coal mine

Photo credit: Fir0002 CC-BY-SA

Adjacent canary idea

Terminator canary

Value hard to reproduce because it would tell the
copy to stop
StackGuard: 0x00 0D 0A FF

0: String functions
newline: fgets(), etc.
-1: getc()
carriage return: similar to newline?

Doesn’t stop: memcpy, custom loops

Random canary

Can’t reproduce because attacker can’t guess

For efficiency, usually one per execution

Ineffective if disclosed

XOR canary

Want to protect against non-sequential overwrites

XOR return address with value c at entry

XOR again with c before return

Standard choice for c: see random canary

Further refinements

More flexible to do earlier in compiler

Rearrange buffers after other variables
Reduce chance of non-control overwrite

Skip canaries for functions with only small variables
Who has an overflow bug in an 8-byte array?



What’s usually not protected?

Backwards overflows

Function pointers

Adjacent structure fields

Adjacent static data objects

Where to keep canary value

Fast to access

Buggy code/attacker can’t read or write

Linux/x86: %gs:0x14

Complex anti-canary attack

Canary not updated on fork in server

Attacker controls number of bytes overwritten

Complex anti-canary attack

Canary not updated on fork in server

Attacker controls number of bytes overwritten

ANRY BNRY CNRY DNRY ENRY FNRY

search 232 ! search 4 � 28

Shadow return stack

Suppose you have a safe place to store the canary

Why not just store the return address there?

Needs to be a separate stack

Ultimate return address protection

Outline

Return address protections

Announcements intermission

ASLR and counterattacks

W�X (DEP)

Note to early readers

This is the section of the slides most likely to change
in the final version

If class has already happened, make sure you have
the latest slides for announcements

Outline

Return address protections

Announcements intermission

ASLR and counterattacks

W�X (DEP)



Basic idea

“Address Space Layout Randomization”

Move memory areas around randomly so attackers
can’t predict addresses
Keep internal structure unchanged

E.g., whole stack moves together

Code and data locations

Execution of code depends on memory location

E.g., on 32-bit x86:
Direct jumps are relative
Function pointers are absolute
Data must be absolute

Relocation (Windows)

Extension of technique already used in compilation

Keep table of absolute addresses, instructions on
how to update

Disadvantage: code modifications take time on load,
prevent sharing

PIC/PIE (GNU/Linux)

“Position-Independent Code / Executable”

Keep code unchanged, use register to point to data
area

Disadvantage: code complexity, register pressure
hurt performance

What’s not covered

Main executable (Linux 32-bit PIC)

Incompatible DLLs (Windows)

Relative locations within a module/area

Entropy limitations

Intuitively, entropy measures amount of randomness,
in bits

Random 32-bit int: 32 bits of entropy

ASLR page aligned, so at most 32- 12 = 20 bits of
entropy

Other constraints further reduce possibilities

Leakage limitations

If an attacker learns the randomized base address,
can reconstruct other locations

Any stack address ! stack unprotected, etc.

GOT hijack (Müller)

Main program fixed, libc randomized

PLT in main program used to call libc

Rewire PLT to call attacker’s favorite libc functions

E.g., turn printf into system



GOT hijack (Müller)

printf@plt: jmp *0x8049678

...

system@plt: jmp *0x804967c

...

0x8049678: <addr of printf in libc>

0x804967c: <addr of system in libc>

ret2pop (Müller)

Take advantage of shellcode pointer already present
on stack
Rewrite intervening stack to treat the shellcode
pointer like a return address

A long sequence of chained returns, one pop

ret2pop (Müller) Outline

Return address protections

Announcements intermission

ASLR and counterattacks

W�X (DEP)

Basic idea

Traditional shellcode must go in a memory area that
is

writable, so the shellcode can be inserted
executable, so the shellcode can be executed

But benign code usually does not need this
combination

W xor X, really :(W ^ X)

Non-writable code, X! :W

E.g., read-only .text section

Has been standard for a while, especially on Unix

Lets OS efficiently share code with multiple program
instances

Non-executable data, W ! :X

Prohibit execution of static data, stack, heap

Not a problem for most programs
Incompatible with some GCC features no one uses
Non-executable stack opt-in on Linux, but now
near-universal

Implementing W � X

Page protection implemented by CPU
Some architectures (e.g. SPARC) long supported W � X

x86 historically did not
One bit controls both read and execute
Partial stop-gap “code segment limit”

Eventual obvious solution: add new bit
NX (AMD), XD (Intel), XN (ARM)



One important exception

Remaining important use of self-modifying code:
just-in-time (JIT) compilers

E.g., all modern JavaScript engines

Allow code to re-enable execution per-block
mprotect, VirtualProtect
Now a favorite target of attackers

Counterattack: code reuse

Attacker can’t execute new code

So, take advantage of instructions already in binary

There are usually a lot of them

And no need to obey original structure

Classic return-to-libc (1997)

Overwrite stack with copies of:
Pointer to libc’s system function
Pointer to "/bin/sh" string (also in libc)

The system function is especially convenient

Distinctive feature: return to entry point

Chained return-to-libc

Shellcode often wants a sequence of actions, e.g.
Restore privileges
Allow execution of memory area
Overwrite system file, etc.

Can put multiple fake frames on the stack
Basic idea present in 1997, further refinements

Beyond return-to-libc

Can we do more? Oh, yes.

Classic academic approach: what’s the most we
could ask for?

Here: “Turing completeness”

How to do it: reading for Thursday

Next slides

Return-oriented programming (ROP)
And counter-defenses

Control-flow integrity (CFI)


