
CSci 5271
Introduction to Computer Security

Day 2: Intro to Software and OS Security
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Security risk and management

Some terminology

Logistics intermission

Example security failures

Software security engineering

Vulnerabilities in OS interaction

Security as an economic good

Security is a good thing (for defenders)

But, must trade off other things to get it

Rational to not purchase all available

In the big picture, always a compromise

Risk budgeting with ALE

Annual loss expected = (loss
amount)�(incidence)

Net risk reduction = �ALE - (security
cost)

Like with a budget, spreadsheet may
not match reality

Like other cost-benefit analysis, can
make trade-offs more explicit

Failure: Displacement activity

Security “syllogism” (attributed to: politicians):

1. We must do something

2. This is something

3. Therefore we must do this.

Example: airport security

Example: external vs. internal threats

Failure: Risk compensation

Some benefits of security are taken
back by riskier behavior

Example: H-Day in Sweden

We’ll return to human factors later

This class’s perspective

We’ll mostly ignore management issues

For this class, maximize security at all
costs

Outline

Security risk and management

Some terminology

Logistics intermission

Example security failures

Software security engineering

Vulnerabilities in OS interaction

“Trusted”

In security, “trusted” is a bad word

X is trusted: X can break your security

“Untrusted” = okay if it’s evil

Trusted Computing Base (TCB):
minimize

“Trusted” vs. “trustworthy”

Something you actually should trust is
“trustworthy”

Concise definition of security failure:
something trusted is not trustworthy

“Privilege”

Privilege is the power to take
security-relevant actions

Concise definition of security failure: the
adversary gets privilege they shouldn’t

3 common privilege levels

1. Administrator/root/OS kernel

2. Regular user of system

3. Evil people on the Internet

3 common privilege levels

1. Administrator/root/OS kernel

* Local exploit

2. Regular user of system

* Remote exploit

3. Evil people on the Internet

Outline

Security risk and management

Some terminology

Logistics intermission

Example security failures

Software security engineering

Vulnerabilities in OS interaction

Posting slides before lecture

I’ll try for 11:59pm on the night before,
not guaranteed

Announcements are most likely to
change, recheck after

Exercise set 1

Available on website

Due Wednesday, September 25th, on
Canvas

Groups of 1-3, turn in one copy

Outline

Security risk and management

Some terminology

Logistics intermission

Example security failures

Software security engineering

Vulnerabilities in OS interaction

Classic buffer overflow

char buf[20];

gets(buf);

Vulnerability in finger daemon

Morris worm brought down 1988
Internet (4.3BSD VAXes)

Buffer overflow classification

Bug: stack buffer overflow

Attack: return address overwrite

Consequence: (binary) code injection

Read It Twice (WOOT’12)

Smart TV (running Linux) only accepts
signed apps on USB sticks

1. Check signature on file

2. Install file

Malicious USB device replaces app
between steps

TV “rooted”/“jailbroken”

Confused deputy compiler

Compiler writes to billing database

Compiler can produce debug output to
user-specified file

Specify debug output to billing file,
disrupt billing

How to write policy preventing this?

Leaky intelligence analysts

1000s of analysts need to view 1000s
of classified documents to do their job

Can we prevent it if one wants to send
them to the Washington Post?

More than regular access control

(Reality: many non-technical problems)

Outline

Security risk and management

Some terminology

Logistics intermission

Example security failures

Software security engineering

Vulnerabilities in OS interaction

Vulnerabilities are bugs

Security bugs “just a special case” of
bugs

Like regular bugs, only obscure ones
make it through testing
Key difference:

Rare regular bug has limited impact
Attackers seek out vulnerability
circumstances

Security and quality

Security correlated with other software
quality:

Developers understand code well
Interactions between modules controlled
Well tested

Security and other features

Security would be much easier if
systems were less complex

But, very few users want that trade-off

Risk compensation with improvements
to development process

Contracts and checks

Requirement: check X before doing Y

What function’s responsibility is the
check?

Answer embodied in contracts, aka
specifications, preconditions and
postconditions

Defensive programming

Analogy: defensive driving

Don’t assume things are right, check

Inbound: preconditions on arguments

Outbound: error conditions

Within reason: some things can’t be
checked at some places

Outline

Security risk and management

Some terminology

Logistics intermission

Example security failures

Software security engineering

Vulnerabilities in OS interaction

Shell code injection

Don’t pass untrusted strings to a
command shell

In C: system, popen

system("cmd $arg1 $arg2")

Fix 1: avoid shell

Fix 2: sanitize data (preferably whitelist)

Shell code injection example

Benign: system("cp $arg1 $arg2"),
arg1 = "file1.txt"

Attack: arg1 = "a b; echo Gotcha"

Command:
"cp a b; echo Gotcha file2.txt"

Not a complete solution: blacklist ‘;’

Bad/missing error handling

Under what circumstances could each
system call fail?

Careful about rolling back after an error
in the middle of a complex operation

Fail to drop privileges) run untrusted
code anyway

Update file when disk full) truncate

Race conditions

Two actions in parallel; result depends
on which happens first

Usually attacker racing with you

1. Write secret data to file

2. Restrict read permissions on file

Many other examples

Classic races: files in /tmp

Temp filenames must already be unique

But “unguessable” is a stronger
requirement

Unsafe design (mktemp(3)): function to
return unused name

Must use O EXCL for real atomicity

TOCTTOU gaps

Time-of-check (to) time-of-use races
1. Check it’s OK to write to file
2. Write to file

Attacker changes the file between
steps 1 and 2

Just get lucky, or use tricks to slow
you down

TOCTTOU example

int safe_open_file(char *path) f
int fd = -1;

struct stat s;

stat(path, &s)

if (!S ISREG(s.st mode))

error("only regular files allowed");

else fd = open(path, O RDONLY);

return fd;

g

TOCTTOU example

int safe_open_file(char *path) f
int fd = -1, res;

struct stat s;

res = stat(path, &s)

if (res || !S ISREG(s.st mode))

error("only regular files allowed");

else fd = open(path, O RDONLY);

return fd;

g

TOCTTOU example

int safe_open_file(char *path) f
int fd = -1, res;

struct stat s;

res = stat(path, &s)

if (res || !S ISREG(s.st mode))

error("only regular files allowed");

else fd = open(path, O RDONLY);

return fd;

g

Changing file references

With symbolic links

With hard links

With changing parent directories

Directory traversal with ..

Program argument specifies file, found
in directory files

What about
files/../../../../etc/passwd?

Environment variables

Can influence behavior in unexpected
ways

PATH

LD LIBRARY PATH

IFS

. . .

Also umask, resource limits, current
directory

IFS and why it’s a problem

In Unix, splitting a command line into
words is the shell’s job

String ! argv array
grep a b c vs. grep 'a b' c

Choice of separator characters (default
space, tab, newline) is configurable

Exploit system("/bin/uname")

Next time

Bugs particular to low-level (e.g., C)
programs

