
CSci 5271: Introduction to Computer Security

Exercise Set 4 due: Wednesday, November 20th, 2019

Ground Rules. You may choose to complete these exercises in a group of up to three students.
Each group should turn in one copy with the names of all group members on it; use the Canvas
groups mechanism to indicate your group members if there is more than one. You may use any
source you can find to help with this assignment but you must explicitly reference any source
you use besides the lecture notes or textbook. An electronic PDF copy of your solution should be
submitted on the Canvas by 11:59pm on Wednesday, November 20th.

0. Following directions. (1 point) Specify all the members of your group, both inside your PDF
and using a Canvas assignment group.

1. Random numbers with limited entropy. (32 pts) Alice, Bob, and Carol are employees
of a company (in a small island nation) setting up an online casino website based on card games
like blackjack. They realize that if users could predict the sequence of pseudorandom numbers
used to deal cards, they could win reliably and hurt the company’s bottom line. They’ve found a
good cryptographically-strong pseudorandom number generation algorithm to use in the shuffling
process, but they’re having trouble deciding what to use as the seed when they initialize the
generator at the start of each user’s session.

(Following the usual good security design principles, they don’t want the security of the games
to depend on the choice of the pseudorandom generator or the shuffling algorithm being secret;
they might also want to franchise their casino out in the future. But practically speaking, reverse-
engineering those algorithms would be a significant effort, so attacks that worked without the
attacker needing to do so would be particularly damaging.)

(a) Alice suggests seeding the PRNG with the time: specifically the date and time as returned
by the Unix time system call, equal to the number of seconds since midnight, January 1st
1970 UTC. Explain why this is a bad idea by describing an easy attack.

(b) Bob suggests seeding the PRNG with the process ID of the login CGI script. Assuming this
script runs once each time a player logs in, and process ID numbers are assigned sequentially
in the range of 2 to 65535, describe an attack against this scheme.

(c) Carol suggests combining Alice and Bob’s ideas by taking the time and the PID and XORing
them together. But Alice points out a problem with this scheme that involves a user logging
in once every second. Explain the details of her attack and why it’s a problem.

(d) After the problems with their previous schemes, Alice, Bob, and Carol have called you in as
a consultant. Suppose that because of the architecture of the system, the seed is required to
be a deterministic function of the time in seconds and the PID. Propose a better combining
function that takes these two pieces of information as input and produces a bit string (of any
length) than can be used as a seed. Would it help if the function could also take another
input that was like a key, fixed per-site but secret? Evaluate the security of your approach.

1

2. Cross-site scripting variations. (17 pts) There are a lot of different kinds of cross-site script-
ing vulnerabilities, but for space reasons we only covered one of them in hands-on assignment 2.
This question covers another. Here’s an excerpt from some Java code in the 2014 implementation
of question 6 from hands-on assignment 2:

public class MACCookieServlet extends GroupServlet {

@Override

protected void doGet(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, IOException {

String username = req.getParameter("username");

if (username == null)

username = "";

String digest_hex = ...;

resp.setStatus(HttpServletResponse.SC_OK);

resp.setContentType("text/html;charset=utf-8");

resp.getWriter().print("User \"");

resp.getWriter().print(username);

resp.getWriter().print("\" is identified with the MAC ");

resp.getWriter().print(digest_hex);

resp.getWriter().println("\".");

}

}

This code suffers a reflected XSS vulnerability: the username parameter is under the control of
the untrusted user, and it is copied directly into the HTML output. So if it contained JavaScript,
that code would run with the site’s permissions. There’s no similar problem with digest hex,
because the omitted code ensures that it contains only hexadecimal digits.

One way to fix this vulnerability would be to sanitize the contents of the username string using
HTML entities; for instance, translating each “<” into “<”. This is what we did for the newer
version of the question (in PHP, we used htmlspecialchars). But suppose the programmer didn’t
know what library would contain a good implementation of that translation or was too lazy to
implement it him or herself. What other simple change could you make to this code to avoid the
cross-site-scripting danger?

3. TCP-Unfriendly. (30 pts) TCP’s “congestion control” mechanism relies on end-hosts (i.e.,
users) to respond appropriately to network congestion by backing off their sending rate. One po-
tential problem with this mechanism is what’s called by economists the “tragedy of the commons.”
Suppose Alice knows that everyone else obeys TCP’s congestion control mechanism. Then if she
continues sending at the same rate, everyone else will slow down a little bit more and she will get
better service from the network. So Alice has no motivation to obey TCP congestion control (other
than the fact that not doing so involves finding or writing her own TCP stack—details, details)
and in fact neither does anyone else. But if no one obeys the mechanism, the network (commons)
becomes useless, which is the tragedy.

(a) Bob the Network Builder has an idea about how to solve this problem. He reasons that con-
gested routers can see the exact state of a TCP connection. So if a particular connection does
not slow down in response to dropped packets, the router can send a RST packet to each end

2

of the connection. This will cause both ends of the connection to drop the connection, much
more painful than just dropping an odd packet or two. From a security standpoint, what’s
the problem with Bob’s idea—that is, if I’m an unscrupulous user intent on communicating
at a high rate, can I circumvent this mechanism?

(b) When Bob realizes that reset packets aren’t sufficient, he proposes a more direct approach:
blacklisting. Under this idea, routers that notice TCP senders that don’t respond to dropped
packets appropriately will just stop routing packets for that sender. List several ways in which
this is both ineffective against adversaries and a generally bad idea if adversaries got wind of
it.

4. Firewall Schmirewall. (20 pts) Sarah is installing a network firewall for her company. Being
familiar with the principle of fail-safe defaults, she has configured the firewall to DENY all packets
by default. Now she needs to identify the minimal access rules that will allow her organization to
use its Internet connection. For example, her organization will need to be able to send and receive
email through the firewall, and uses a central mail server at IP address 10.1.100.100. So she has
added rules to the firewall that look like this:

SRC ADDR DEST ADDR SRC PORT DST PORT PROTOCOL ACTION

10.1.100.100 * * 25 (SMTP) TCP ALLOW

* 10.1.100.100 * 25 (SMTP) TCP ALLOW

The organization has determined that it will also require the following kinds of Internet access:

• Incoming SSH access to a VPN server, at 10.1.100.200.

• Access to the web, through a proxy that whitelists approved sites. The proxy’s address is
10.1.200.200.

• Outgoing SSH access to three client sites: 0.1.2.3, 42.42.42.42, and 3.14.15.9.

List the minimal set of firewall rules necessary to allow these connections. List some potential
vulnerabilities associated with this ruleset. Can the firewall and proxy servers defend against these
vulnerabilities?

3

