
CSci 5271: Introduction to Computer Security

Exercise Set 1 due: Wednesday September 25th, 2019

Ground Rules. You may choose to complete these exercises in a group of up to three students.
Each group should turn in one copy with the names of all group members on it. You may use any
source you can find to help with this assignment but you must explicitly reference any source you
use besides the lecture notes or textbook. An electronic (PDF) copy of your solution should be
submitted on Canvas by 11:59pm on Wednesday, September 25th.

1. Threat models and risk assessment. (15 pts) Suppose the course instructor has created
a database of all the information for this course: homeworks, exams and solutions, handouts, and
grades. Create a detailed threat model for this database: what should the security goals be? What
are reasonable attacks, and who are the potential attackers? What threats should we explicitly
exclude from consideration?

Now assume that the database is stored on the instructor’s ancient personal laptop, which has
no network hardware.1 Propose at least two security mechanisms that would help counter your
threat model (e.g. file or disk encryption, a laptop lock, a safe to store the laptop, a kevlar laptop
sleeve, relocation to Fort Knox . . .), and analyze the net risk reduction of both. Remember that
net risk reduction is a formula, so you should have numeric estimates of the costs of attacks and
defense mechanisms, the rates of attacks, etc. You should justify these estimates for the various
incidence rates and costs.
2. Finding vulnerabilities. (20 pts) Here are a few code excerpts. For each part, find the
vulnerability and describe how to exploit it.

(a) Below is a short POST-method CGI script written in Perl. It reads a line of the form “field-
name=value” from the standard input, and then executes the last command (in the line
$result = ‘last ...‘) to see if the user name “value” has logged in recently. Describe how
to construct an input that executes an arbitrary command with the privileges of the script.
Explain how your input will cause the program to execute your command, and suggest two
good ways the code could be changed to avoid the problem.

#!/usr/bin/perl

print "Content-Type: text/html\r\n\r\n";

print "<HTML><BODY>\n";

($field_name, $username_to_look_for) = split(/=/, <>);

chomp $username_to_look_for;

$result = ‘last -1000 | grep $username_to_look_for‘;

if ($result) {

print "$username_to_look_for has logged in recently.\n";

} else {

print "$username_to_look_for has NOT logged in recently.\n";

}

print "</BODY></HTML>\n";

1This is a hypothetical situation, not reflecting the way the course information is really stored. Of course honest
students such as yourselves wouldn’t be tempted to attack the course information.

1

(The Perl operation ‘cmd‘, pronounced “backticks”, passes the string cmd to a shell, and
returns the output of cmd in a string. You can get more detailed documentation under man

perlop.)

(b) This is a short (and poorly written) C function that deletes the last byte from any file
that is not the extremely important file /highly/critical. Describe how to exploit a race
condition to make the function delete the last byte of /highly/critical, assuming that
the program has read and write access to the file /highly/critical but the user does not.
Your description should list what file the fixed string pathname refers to at each important
point in the exploit, and explain why the steps will work. (You can read documentation for
Unix/Linux system calls with a command like man 2 stat on a Linux machine, or at various
places on the web.)

void silly_function(char *pathname) {

struct stat f, we;

int rfd, wfd;

char *buf;

stat(pathname, &f);

stat("/highly/critical", &we);

if (f.st_dev == we.st_dev && f.st_ino == we.st_ino) {

return;

}

rfd = open(pathname, O_RDONLY);

buf = malloc(f.st_size - 1);

read(rfd, buf, f.st_size - 1);

close(rfd);

stat(pathname, &f);

if (f.st_dev == we.st_dev && f.st_ino == we.st_ino) {

return;

}

wfd = open(pathname, O_WRONLY | O_TRUNC);

write(wfd, buf, f.st_size-1);

close(wfd);

free(buf);

}

2

3. Overflowing buffers. (30 pts) This question discusses some defenses against, and variations
on, the attack of buffer-overflow stack smashing.

(a) Reversing the Stack. When people learn about the stack smashing attack for the first time
(such as when ℵ1’s tutorial came out), it often occurs to them to suggest the following defense.
On our present systems it’s relatively easy for an overflowed buffer to overwrite the return
address because the stack grows in the opposite direction as buffers are commonly written to.
But if we reversed the direction in which we write the stack, then overflowing the end of a
buffer would take you away from the location of the return address. Of course this wouldn’t be
complete protection, because programs can mistakenly write before the beginning of a buffer
rather than after the end. But because the return address comes right at the beginning of a
stack frame, a procedure could never overwrite its own return address by writing beyond the
end of one of its local variables. However there’s a more serious limitation of this proposed
defense.

Give an example program and attack scenario in which a program’s attempt to strcpy a long
string into a too-short buffer will cause a return address on the stack to be overwritten, even
if the stack grows in the same direction as buffers. A good description will show the contents
of the stack at the important points of the attack and walk through the control flow under
the attack, similar to the regular buffer overflow example we discussed in lecture.

(b) Many defenses against stack smashing work by detecting when the return address has been
overwritten (like stack canaries), or when the attacker tries to hijack control flow to a new
location (like CFI). However there are other ways that a buffer overflow can be used to make
a program do the attacker’s bidding. Consider the following function from a very simplified
payment application:

void payment(char *name, double amount_jpy,

char *purpose, int purpose_len) {

double amount_usd = amount_jpy / 109.23;

char memo[32];

strcpy(memo, "Payment for: ");

memcpy(memo + strlen(memo), purpose, purpose_len);

write_check(name, amount_usd, memo);

}

Suppose that you as the attacker can control the purpose and purpose len arguments, but
not amount jpy, on a payment to yourself. (In normal usage, purpose len would be the
length of the string pointed to by purpose, including a terminating null character.)

Describe how by supplying a carefully crafted purpose string, you can increase the amount you
get paid, even if stack canaries and CFI are both in use. For concreteness, you can assume a
64-bit platform using IEEE floating point on which local variables are allocated consecutively
from higher to lower addresses on the stack in the order they are declared. However, assume
that you do not know whether the victim system is little-endian or big-endian, so pick an
attack that maximizes your guaranteed return across either little- or big-endian.

3

4. Reckless programming. (20 pts) Let’s practice finding bad programming practices that could
lead to exploits.

Here’s a function that’s intended to reverse the order of a subsequence of integers within an
array. For instance suppose the array a originally contains the integers 1 2 3 4 5 6 7 8 9. If
you call reverse_range(a, 2, 5), then afterwards the array a will contain the same integers but
with the ones in positions 2 through 5 (counting from zero) in the opposite order. I.e., a will be 1

2 6 5 4 3 7 8 9.
Unfortunately you’ll see that this function was not implemented very carefully.

/* Reverse the elements from FROM to TO, inclusive */

void reverse_range(int *a, int from, int to) {

unsigned int *p = &a[from];

unsigned int *q = &a[to];

/* Until the pointers move past each other: */

while (!(p == q + 1 || p == q + 2)) {

/* Swap *p with *q, without using a temporary variable */

*p += *q; /* *p == P + Q */

*q = *p - *q; /* *q == P + Q - Q = P */

*p = *p - *q; /* *p == P + Q - P = Q */

/* Advance pointers towards each other */

p++;

q--;

}

}

(a) Describe at least three bad things that could happen when running this function in situations
that the programmer probably didn’t think of. For each case, identify the programming
mistake, the problematic situation, and the bad outcome.

(b) Provide a safer implementation for this function. Note that your new implementation will have
to behave differently than the old implementation in some circumstances (probably including,
though not necessarily limited to, those situations in which the old one could crash). Think
carefully about what behavior would be best, and explain your choices. If your new version
has a different interface, explain why this change is needed.

4

5. Obscure C behavior. (15 pts)

(a) With the integers you use in math class, there are only a few pairs you can multiply together
to get 18: 1 and 18, -1 and -18, 9 and 2, -9 and -2, 6 and 3, or -6 and -3. However because
int variables in C have a limited bit width, they behave somewhat differently. Explain how
to find, and give, another pair of 32-bit ints which multiply together to get 18, even though
they wouldn’t as mathematical integers. There is a simple example you can write down (e.g.,
in hex) without any complicated calculation; it may be easiest to see if you think about the
fact that multiplying by a power of two is equivalent to shifting left in binary.

(b) With normal integers there isn’t any integer you can multiply by 7 to get 18. But again
C ints are different. Explain how to find, and give, a 32-bit int which yields 18 when
multiplied by 7. For this it might be easiest to use a computer or at least a calculator for
the calculations. You can get the answer, and partial credit, just with a brute-force search
through all 232 possibilities, but for full credit think of a more clever approach. (If you haven’t
heard about “modular arithmetic”, you might want to look it up. Besides its relevance here,
we’ll encounter it again later in the course.)

(c) In your previous C programming you’ve probably already used the formatted output function
printf, but you may not have used all of its features. For this question, write a printf format
string that produces the output:

$4200000000000000000000000 BAREFACED electric 1337

when passed the five arguments

0, 82, 15707373, "election", 735

Your format string should contain 5 conversion specifications (i.e., it should use all five argu-
ments), and be no more than 29 characters long.

5

