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Main Points

• Scheduling policy: what to do next, when there are multiple 
threads ready to run
– Or multiple packets to send, or web requests to serve, or …

• Definitions
– response time, throughput, predictability

• Uniprocessor policies
– FIFO, round robin, optimal
– multilevel feedback as approximation of optimal

• Multiprocessor policies
– Affinity scheduling, gang scheduling

• Queueing theory
– Can you predict/improve a system’s response time?



Example

• You manage a web site, that suddenly 
becomes wildly popular.  Do you?

– Buy more hardware?

– Implement a different scheduling policy?

– Turn away some users?  Which ones?

• How much worse will performance get if the 
web site becomes even more popular?



Definitions

• Task/Job
– User request: e.g., mouse click, web request, shell command, …

• Latency/response time
– How long does a task take to complete?

• Throughput
– How many tasks can be done per unit of time?

• Overhead
– How much extra work is done by the scheduler?

• Fairness
– How equal is the performance received by different users?

• Predictability
– How consistent is the performance over time?



More Definitions

• Workload
– Set of tasks for system to perform

• Preemptive scheduler
– If we can take resources away from a running task

• Work-conserving
– Resource is used whenever there is a task to run
– For non-preemptive schedulers, work-conserving is not always 

better

• Scheduling algorithm 
– takes a workload as input
– decides which tasks to do first
– Performance metric (throughput, latency) as output
– Only preemptive, work-conserving schedulers to be considered



First In First Out (FIFO)

• Schedule tasks in the order they arrive

– Continue running them until they complete or 
give up the processor

• On what workloads is FIFO particularly bad?



Shortest Job First (SJF)

• Always do the task that has the shortest 
remaining amount of work to do
– Often called Shortest Remaining Time First (SRTF)

• Suppose we have five tasks arrive one right 
after each other, but the first one is much 
longer than the others
– Which completes first in FIFO? Next?

– Which completes first in SJF? Next?



FIFO vs. SJF



Question

• Claim: SJF is optimal for average response time

– Why? Easy to prove by contradiction.

• Does SJF have any downsides?



Can we do SJF in practice?

• May be hard at OS level since tasks are black 
boxes but concept can be widely applied

• Think about Web requests

– You can queue web requests

– Prioritize small ones v. large ones

– Examples?



Question

• Is FIFO ever optimal?

– Yes, when all requests are of equal length

• Why is it good?



Starvation and Sample Bias

• Suppose you want to compare two scheduling 
algorithms
– Create some infinite sequence of arriving tasks

– Start measuring

– Stop at some point

– Compute average response time as the average 
for completed tasks between start and stop

• Problem is at time t: one algorithm has 
completed fewer tasks



Round Robin

• Each task gets resource for a fixed period of 
time (time quantum)

– If task doesn’t complete, it goes back in line

• Need to pick a time quantum

– What if time quantum is too long?  

• Infinite?

– What if time quantum is too short?  

• One instruction?



Round Robin



Round Robin vs. FIFO

• Assuming zero-cost time slice, is Round Robin 
always better than FIFO?

– Same size jobs time-slicing may serve little purpose 
except “initial” response

• Round robin for video streaming

– Even for equal size streams this maintains stable 
progress for all



Round Robin vs. FIFO



Round Robin = Fairness?

• Is Round Robin always fair?
– Sort of but short jobs finish first!

• What is fair?
– FIFO?

– Equal share of the CPU?

– What if some tasks don’t need their full share?

– Minimize worst case divergence?
• Time task would take if no one else was running

• Time task takes under scheduling algorithm



Mixed Workload



Max-Min Fairness

• How do we balance a mixture of repeating tasks:
– Some I/O bound, need only a little CPU

– Some compute bound, can use as much CPU as they 
are assigned

• One approach: maximize the minimum allocation 
given to a task
– If any task needs less than an equal share, schedule 

the smallest of these first

– Split the remaining time using max-min

– If all remaining tasks need at least equal share, split 
evenly



Multi-level Feedback Queue (MFQ)

• Goals:

– Responsiveness

– Low overhead

– Starvation freedom

– Some tasks are high/low priority

– Fairness (among equal priority tasks)

• Not perfect at any of them!

– Used in Linux



MFQ

• Set of Round Robin queues

– Each queue has a separate priority

• High priority queues have short time slices

– Low priority queues have long time slices

• Scheduler picks first thread in highest priority 
queue

• Tasks start in highest priority queue

– If time slice expires, task drops one level



MFQ



Uniprocessor Summary (1)

• FIFO is simple and minimizes overhead. 

• If tasks are variable in size, then FIFO can have 
very poor average response time. 

• If tasks are equal in size, FIFO is optimal in 
terms of average response time. 

• Considering only the processor, SJF is optimal 
in terms of average response time. 

• SJF is poor in terms of variance in response 
time. 



Uniprocessor Summary (2)

• If tasks are variable in size, Round Robin 
approximates SJF. 

• If tasks are equal in size, Round Robin will 
have very poor average response time. 

• Tasks that intermix processor and I/O benefit 
from SJF and can do poorly under Round 
Robin. 



Uniprocessor Summary (3)

• Max-Min fairness can improve response time 
for I/O-bound tasks. 

• Round Robin and Max-Min fairness both avoid 
starvation. 

• By manipulating the assignment of tasks to 
priority queues, an MFQ scheduler can 
achieve a balance between responsiveness, 
low overhead, and fairness. 
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Multiprocessor Scheduling

• What would happen if we used MFQ on a 
multiprocessor?

– Contention for scheduler spinlock

– Cache slowdown due to ready list data structure 
pinging from one CPU to another

– Limited cache reuse: thread’s data from last time 
it ran is often still in its old cache



Per-Processor Affinity Scheduling

• Each processor has its own ready list

– Protected by a per-processor spinlock

• Put threads back on the ready list where it had 
most recently run

– Ex: when I/O completes, or on Condition->signal

• Idle processors can steal work from other 
processors



Per-Processor Multi-level Feedback
with Affinity Scheduling



Scheduling Parallel Programs

• What happens if one thread gets time-sliced 
while other threads from the same program 
are still running?

– Assuming program uses locks and condition 
variables, it will still be correct

– What about performance?



Bulk Synchronous Parallelism

• Loop at each processor:

– Compute on local data (in parallel)

– Barrier

– Send (selected) data to other processors (in parallel)

– Barrier

• Examples:

– MapReduce

– Fluid flow over a wing

– Most parallel algorithms can be recast in BSP



Tail Latency



Scheduling Parallel Programs

Oblivious: each processor time-slices its ready 
list independently of the other processors



Gang Scheduling



Critical Path Delay



Parallel Program Speedup



Space Sharing



Queueing Theory

• Can we predict what will happen to user 
performance:

– If a service becomes more popular?

– If we buy more hardware?

– If we change the implementation to provide more 
features? 



Queueing Model

Assumption: average performance in a stable system,
where the arrival rate (ƛ) matches the departure rate (μ)



Definitions

• Queueing delay (W): wait time

– Number of tasks queued (Q)

• Service time (S): time to service the request

• Response time (R) = queueing delay + service time

• Utilization (U): fraction of time the server is busy

– Service time * arrival rate (ƛ)

• Throughput (X): rate of task completions

– If no overload, throughput = arrival rate



Little’s Law

N = X * R

N: number of tasks in the system 

Applies to any stable system – where arrivals 
match departures.



Question

Suppose a system has throughput (X) = 100 tasks/s, 
average response time (R) = 50 ms/task

• How many tasks are in the system on average?

• If the server takes 5 ms/task, what is its 
utilization?

• What is the average wait time?

• What is the average number of queued tasks?



Queueing

• What is the best case scenario for minimizing 
queueing delay?



Queueing: Best Case



Response Time: Best vs. Worst Case



Queueing: Average Case?

• What is average?

– Gaussian: Arrivals are spread out, around a 
mean value

– Exponential: arrivals are memoryless

– Heavy-tailed: arrivals are bursty

• Can have randomness in both arrivals 
and service times



Exponential Distribution



Exponential Distribution

Permits closed form solution to state probabilities, 
as function of arrival rate and service rate



Response Time vs. Utilization



Question

• Exponential arrivals: R = S/(1-U)

• If system is 20% utilized, and load increases by 
5%, how much does response time increase?

• If system is 90% utilized, and load increases by 
5%, how much does response time increase?



What if Multiple Resources?

• Response time = 

Sum over all i

Service time for resource i / 

(1 – Utilization of resource i)

• Implication

– If you fix one bottleneck, the next highest utilized 
resource will limit performance



Overload Management

• What if arrivals occur faster than service can 
handle them
– If do nothing, response time will become infinite

• Turn users away?
– Which ones?  Average response time is best if turn 

away users that have the highest service demand

– Example: Highway congestion

• Degrade service?
– Compute result with fewer resources

– Example: CNN static front page on 9/11



Highway Congestion (measured)



Data Center Case Study

• P. 361 to be added
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Overview

• Scheduling Issues

• Lottery Scheduling

• Implementation 

• Experiments

• Conclusions



Scheduling Issues

• Context

– multiple scarce resources: CPU, I/O bw, mem

– concurrently executing clients

– service requests of varying importance and 
characteristics

• Quality of Service

• Modularity



Conventional Scheduling

• Priority Scheduling
– absolute control (but crude)

– decay-usage scheduling 
• fair, but hard to analyze, gives avg performance

– Does p=1 vs. p=2 mean p=1 always gets the CPU or 2/3?

• Problems
– often ad hoc

– unable to control service rates

– no modular abstraction



Solution: Lottery Scheduling

• Easily Understood Behavior

– proportional share

• Resource Rights Vary Smoothly

– resource consumption rate proportional to 
share allocated

• Flexible Control Over Service Rates

– current schedulers are rigid

• Modular Abstraction

– multiple resource management policies



Lottery Scheduling Basics

• Randomized Mechanism

• Lottery Tickets

– encapsulate resource rights

– issued in different amounts

– first-class objects

• Lotteries

– randomly select winning ticket

– grant resource to client holding winning ticket



Example Lottery



Lottery Scheduling Advantages

• Probabilistic Guarantees

– n lotteries, client holds t tickets, T total tickets

– p = t/T (binomial distribution)

– throughput proportional to ticket allocation

• E[w] = np

– response time inversely proportional to ticket 
allocation

• E[n] = 1/p



Lottery Scheduling Advantages

• Proportional-Share Fairness

– direct control over service rates

– easily understood behavior

• Supports Dynamic Environments

– immediately adapts to changes

– fair chance to win each allocation

• No starvation

– hold a non-zero # of tickets



Managing Diverse Resources

• Processor Time

• Lock Access

• I/O Bandwidth

– disk bandwidth

– network bandwidth

• Space-Shared Resources

– memory



Flexible Resource Management

• Ticket Transfers
– explicit transfer between clients

– useful when client blocks while waiting

• Ticket inflation/deflation
– client creates/removes tickets

– violates modularity and load insulation

– convenient among mutually trusting clients: no 
communication is needed



Ticket Currencies

• Tickets Denominated in Currencies

• Modular Resource Management

– locally contain effects of inflation

– isolates loads across logical trust boundaries

• Powerful Abstraction

– name, share, and protect resource rights

– flexibly group or isolate users and tasks



Currency Implementation



Kernel Implementation

• Objects: Ticket, Currency

• Operations

– create/destroy ticket, currency

– fund/unfund currency

– compute value of ticket, currency

• Algorithms

– straightforward list-based lottery, O(lg # clients)

– simple currency conversion scheme



Prototype

• Platform

– Mach 3.0 microkernel

– 25 MHz DECStations

– 100 msec quantum

• System Overhead

– overhead comparable to standard scheduler

– unoptimized prototype



Experiments

• Proportional-Share Service Rates

• Dynamic Ticket Inflation

• Client-Server Ticket Transfers

• Currency Load Insulation

• Lock Waiting Times



Relative Rates



Fairness Over Time



Monte-Carlo Rates



Query Processing Rates



Currencies Insulate Loads



Lottery-Scheduled Locks

• Waiting to Acquire
– waiters transfer funding to lock owner

– lock owner inhertis aggreagte funding to 
acquire CPU

• Release
– return funding to waiters

– hold lottery among waiters

– new winner inherits funding

• Avoids Priority Inversion



Lock Experiment

• Groups of threads A, B with 2:1 Allocation

• Acquire, Hold 50 ms, Release, Compute 50 ms 

• Average Waiting Time

– A waits 450 ms, B waits 948 ms

– 1:2.11 response time ratio

• Lock Acquisitions

– A completes 763, B completes 423

– 1.80 : 1 throughput



Conclusions

• Novel Randomized Scheduling Mechanisms

• Easily Understood Behavior

• Precise Control Over Service Rates

• Modular Resource Management

• Generalizes to Diverse Resources



Next

• Address Translation

• OSPP Chapter 8


