
Multi-Object Synchronization

Chapter 6 OSPP

Part I

Multi-Object Programs

• What happens when we try to synchronize across
multiple objects in a large program?
– Each object with its own lock, condition variables

• Performance: single object
– one big lock?

– worse with multi-object

• Semantics/correctness

• Deadlock

• Eliminating locks

Synchronization Performance

• A program with lots of concurrent threads can
still have poor performance on a multiprocessor:

– Lock contention: only one thread at a time can hold a
given lock

– Shared data protected by a lock may ping back and
forth between the cache within each core

– False sharing: communication between cores even for
data that is not shared

Web Server Lock

• In a memory cache that is accessed 5% of the
time with a single lock

• On a multiprocessor suppose getting the lock
is 4 times slower (get lock from another
cache)

• Need careful design of shared locking

Reducing Lock Contention

• Fine-grained locking: partition by object

– Partition object into subsets, each protected by its own lock

– Example: hash table buckets, hard to resize

• Per-processor data structures: partition by core

– Partition object so that most/all accesses are made by one
processor: reduces false sharing, but cross cache access

– Example: per-processor heap

• Ownership/Staged architecture: partition by op

– Only one thread at a time accesses shared data

– Example: pipeline of threads

Thread Pipelines

• Benefits

– Modularity

– Cache locality

– Problems:

Lock Contention

• Still a major issue on a multiprocessor

• Busy locks can hamper performance

– Everyone wants to access popular object

• MCS locks (if locks are mostly busy)

• RCU locks (if locks are mostly busy, and data is
mostly read-only)

• We’ve seen opts for when lock was mostly
FREE (fastpath)

The Problem with Test and Set

Counter::Increment() {
while (test_and_set(&lock))

;
value++;
lock = FREE;
memory_barrier();

}
What happens if many processors try to acquire the

lock at the same time?
– Hardware doesn’t prioritize “FREE”

The Problem with Test and Test and Set

Counter::Increment() {

while (lock == BUSY && test_and_set(&lock))

;

value++;

lock = FREE;

memory_barrier();

}

What happens if many processors try to acquire the lock?

Test (and Test) and Set Performance

Some Approaches

• Insert a delay in the spin loop

– Helps but acquire is slow when not much contention

• Spin adaptively

– No delay if few waiting

– Longer delay if many waiting (give FREE a chance)

• MCS

– Create a linked list of waiters using compareAndSwap

– Spin on a per-processor location

What If Locks are Still Mostly Busy?

• MCS Locks

– Optimize lock implementation for when lock is
contended

– Create a linked list of waiters using atomic
compareAndSwap instruction

– Spin on a per-processor location

• Relies on atomic read-modify-write instructions

MCS Lock
• Maintain a list of threads waiting for the lock

– Front of list holds the lock
– MCSLock::tail is last thread in list
– New thread uses CompareAndSwap to add to the tail

• Lock is passed by setting next->needToWait = FALSE;
– Next thread spins while its needToWait is TRUE
TCB {

TCB *next; // next in line
bool needToWait;

}
MCSLock {

Queue *tail = NULL; // end of line
}

MCS Lock
• Maintain a list of threads waiting for the lock

– Front of list holds the lock
– MCSLock::tail is last thread in list
– New thread uses CompareAndSwap to add to the tail

• Lock is passed by setting next->needToWait = FALSE;
– Next thread spins while its needToWait is TRUE
TCB {

TCB *next; // next in line
bool needToWait;

}
MCSLock {

Queue *tail = NULL; // end of line
}

MCS Lock Implementation: edited
MCSLock::acquire() {

Queue ∗oldTail = tail;

myTCB−>next = NULL;
myTCB−>needToWait = TRUE;
// keep trying until I can be the tail
while (!compareAndSwap(&tail,

oldTail, &myTCB)) {
oldTail = tail;

}
if (oldTail != NULL) {

oldTail−>next = myTCB;
memory_barrier();
// key: spinning on sep. var!
while (myTCB−>needToWait)

;
}

}

MCSLock::release() {
// if I am the tail, no one is waiting
if (compareAndSwap(&tail,

myTCB, NULL)) ;
else {

while (myTCB−>next == NULL)
;

myTCB−>next−>needToWait=FALSE;
}

}

bool cas (int *p, int old, new) {
if (*p ≠ old) {

return false;
}
*p = new;
return true;

}

MCS In Operation

Deadlock Definition
• Resource: any (passive) entity needed by a thread

to do its job (CPU, disk space, memory, lock)

– Preemptable: can be taken away by OS

– Non-preemptable: must leave with thread

• Starvation: thread waits indefinitely

• Deadlock: circular waiting for resources

– Deadlock => starvation, but not vice versa

Example: two locks (recursive waiting)

Thread A

lock1.acquire();

lock2.acquire();

lock2.release();

lock1.release();

Thread B

lock2.acquire();

lock1.acquire();

lock1.release();

lock2.release();

Dining Lawyers

Each lawyer needs two chopsticks to eat.
Each grabs chopstick on the right first.

Necessary Conditions for Deadlock

• Limited access to resources

– If infinite resources, no deadlock!

• No preemption

– If resources are virtual, can break deadlock

• Multiple independent requests

– “wait while holding”

• Circular chain of requests

Question

• How does Dining Lawyers meet the necessary
conditions for deadlock?
– Limited access to resources

– No preemption

– Multiple independent requests (wait while holding)

– Circular chain of requests

• How can we modify Dining Lawyers to prevent
deadlock?

Preventing Deadlock

• Exploit or limit program behavior
– Limit program from doing anything that might

lead to deadlock

• Predict the future
– If we know what program will do, we can tell if

granting a resource might lead to deadlock

• Detect and recover
– If we can rollback a thread, we can fix a deadlock

once it occurs

Exploit or Limit Behavior

• Provide enough resources
– How many chopsticks are enough?

• Eliminate wait while holding
– Release lock when calling out of module

– Telephone circuit setup: p. 303

– Internet router: p. 303 (conservative: drop pkts)

• Eliminate circular waiting
– Lock ordering: always acquire locks in a fixed order

– Example: move file from one directory to another

Example

Thread 1

1. Acquire A

2.

3. Acquire C

4.

5. If (maybe) Wait for B

Thread 2

1.

2. Acquire B

3.

4. Wait for A

How can we make sure to avoid deadlock?

Deadlock Dynamics

• Safe state:
– For any possible sequence of future resource

requests, it is possible to eventually grant all requests

– May require waiting even when resources are
available!

• Unsafe state:
– Some sequence of resource requests can result in

deadlock

• Doomed state:
– All possible computations lead to deadlock

Banker’s Algorithm

• Grant request iff result is a safe state

• Sum of maximum resource needs of current
threads can be greater than the total resources
– Provided there is some way for all the threads to finish

without getting into deadlock

• Example: proceed iff
– total available resources - # allocated >= max

remaining that might be needed by this thread in
order to finish

– Guarantees this thread can finish

Banker’s Algorithm: insights

• Only allows safe states

• All resource needs are declared upfront, may wait

• Paging: 8 total, A wants 4, B wants 5, C wants 5

Optimistic Approach

• Optimize case with limited contention

• Proceed without the resource
– Requires robust exception handling code

– Amazon example p. 300

• Transactions: Roll back and retry
– Transaction: all operations are provisional until

have all required resources to complete operation

