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Synchronization Motivation

• When threads concurrently read/write shared 
memory, program behavior is undefined

– Two threads write to the same variable; which one 
should win?

• Thread schedule is non-deterministic

– Behavior may change when program is re-run

• Compiler/hardware instruction reordering

• Multi-word operations are not atomic

e.g. i = i + 1



Question: Can this panic?

Thread 1

p = someComputation();

pInitialized = true; 

Thread 2

while (!pInitialized) 

; 

q = someFunction(p); 

if (q != someFunction(p))

panic

Can p change?



Why Reordering?

• Why do compilers reorder instructions?
– Efficient code generation requires analyzing 

control/data dependency

• Why do CPUs reorder instructions?
– Out order execution for efficient pipelining and 

branch prediction

Fix: memory barrier
– Instruction to compiler/CPU, x86 has one

– All ops before barrier complete before barrier returns

– No op after barrier starts until barrier returns



Too Much Milk Example

Person A Person B

12:30 Look in fridge.  Out of milk.

12:35 Leave for store.

12:40 Arrive at store. Look in fridge.  Out of milk.

12:45 Buy milk. Leave for store.

12:50 Arrive home, put milk away. Arrive at store.

12:55 Buy milk.

1:00 Arrive home, put milk away.
Oh no!



Definitions

Race condition: output of a concurrent program depends on the order 
of operations between threads

Mutual exclusion: only one thread does a particular thing at a time

– Critical section: piece of code that only one thread can execute at once 

–

Lock: prevent someone from doing something

– Lock before entering critical section, before accessing shared data

– Unlock when leaving, after done accessing shared data

– Wait if locked (all synchronization involves waiting!)



Desirable Properties

• Correctness property

– Someone buys if needed (liveness)

– At most one person buys (safety)



Too Much Milk, Try #1

• Try #1: leave a note

• Both threads do this …

if (!note)

if (!milk) {

leave note

buy milk

remove note

}



Too Much Milk, Try #2

Thread A

leave note A

if (!note B) {

if (!milk)

buy milk

}

remove note A 

Thread B

leave note B

if (!noteA) { 

if (!milk)

buy milk

}

remove note B 



Too Much Milk, Try #3
Thread A

leave note A

while (note B) // X

do nothing; 

if (!milk)

buy milk;

remove note A

Thread B

leave note B

if (!noteA) {   // Y

if (!milk)

buy milk

}

remove note B 

Can guarantee at X and Y that either:
(i) Safe for me to buy
(ii) Other will buy, ok to quit



Lessons

• Solution is complicated

– “obvious” code often has bugs

• Modern compilers/architectures reorder 
instructions

– Making reasoning even more difficult

• Generalizing to many threads/processors

– Even more complex: see Peterson’s algorithm



Roadmap



Locks

• Lock::acquire

– wait until lock is free, then take it, atomically

• Lock::release
– release lock, waking up anyone waiting for it

1. At most one lock holder at a time (safety)

2. If no one holding, acquire gets lock (progress)

3. If all lock holders finish and no higher priority 
waiters, waiter eventually gets lock (progress or 
fairness)



Atomicity

• All-or-nothing

• In our context:

– Set of instructions that are executed as a group OR

– System will ensure that this appears to be so



Question: Why only Acquire/Release

• Suppose we add a method to a lock, to ask if the 
lock is free.   Suppose it returns true.  Is the lock:

– Free?

– Busy?

– Don’t know?

• Very risky!

if (test lock)

acquire …



Too Much Milk, #4

Locks allow concurrent code to be much simpler:

lock.acquire();

if (!milk) 

buy milk

lock.release();



Lock Example: Malloc/Free

char *malloc (n) {

heaplock.acquire();

p = allocate memory

heaplock.release();

return p;

}

void free(char *p) {

heaplock.acquire();

put p back on free list

heaplock.release();

}
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Example: Bounded Buffer

tryget() {

item = NULL;

lock.acquire();

if (front < tail) {

item = buf[front % MAX];

front++;

}

lock.release();

return item;

}

tryput(item) {

lock.acquire();

if ((tail – front) < size) {

buf[tail % MAX] = item;

tail++;

}

lock.release();

}

Initially: front = tail = 0; lock = FREE; MAX is buffer capacity



Condition Variables

• Waiting inside a critical section

– Called only when holding a lock

• Wait: atomically release lock and relinquish 
processor

– Reacquire the lock when wakened

• Signal: wake up a waiter, if any

• Broadcast: wake up all waiters, if any



Example: Bounded Buffer

get() {
lock.acquire();
while (front == tail) {

empty.wait(&lock);
}
item = buf[front % MAX];
front++;
full.signal(lock);
lock.release();
return item;

}

put(item) {
lock.acquire();
while ((tail – front) == MAX) {

full.wait(&lock);
}
buf[tail % MAX] = item;
tail++;
empty.signal(lock);
lock.release();

}

Initially: front = tail = 0; MAX is buffer capacity
empty/full are condition variables



Condition Variable Design Pattern

methodThatWaits() {

lock.acquire();

// Read/write shared state

while (!testSharedState()) {

cv.wait(&lock);

}

// Read/write shared state

lock.release();

}

methodThatSignals() {

lock.acquire();

// Read/write shared state

If (testSharedState())

cv.signal(&lock);

// Read/write shared state

lock.release();

}

not all impls require 



Pre/Post Conditions

• What is state of the bounded buffer at lock 
acquire?

– front <= tail

– front + MAX >= tail 

• These are also true on return from wait

• And at lock release

• Allows for proof of correctness 



Condition Variables

• ALWAYS hold lock when calling wait, signal, 
broadcast
– Condition variable is sync FOR shared state
– ALWAYS hold lock when accessing shared state

• Condition variable is memoryless
– If signal when no one is waiting, no op
– If wait before signal, waiter wakes up

• Wait atomically releases lock
– What if wait (i.e. block), then release?
– What if release, then wait (i.e. block)?



Condition Variables, cont’d

• When a thread is woken up from wait, it may not run 
immediately
– Signal/broadcast put thread on ready list
– When lock is released, anyone might acquire it

• Wait MUST be in a loop
while (needToWait()) {

condition.Wait(lock);
}

• Simplifies implementation
– Of condition variables and locks
– Of code that uses condition variables and locks



Spurious Wakeup

• Thread can be woken up “prematurely”
– Unclear when exactly this can ever happen?

– E.g. signal arrives when holding a user level lock …

• Postels Law

• Assumption of spurious wakeups forces thread 
to be conservative in what it does: set 
condition when notifying other threads, and 
liberal in what it accepts: check the condition 
upon any return

• Java claims this is possible!



Structured Synchronization

• 1. Identify objects or data structures that can be accessed by multiple 
threads concurrently

• 2. Add locks to object/module
– Grab lock on start to every method/procedure
– Release lock on finish

• 3. If need to wait
– while(needToWait()) { condition.Wait(lock); }
– Do not assume when you wake up, signaller just ran

• 4. If do something that might wake someone up (hint)
– Signal or Broadcast

• 5. Always leave shared state variables in a consistent state
– When lock is released, or when waiting



Mesa vs. Hoare semantics

• Mesa

– Signal puts waiter on ready list

– Signaller keeps lock and processor

• Hoare

– Signal gives processor and lock to waiter

– When waiter finishes, processor/lock given back 
to signaller



FIFO Bounded Buffer
(Hoare semantics)

get() {
lock.acquire();
if (front == tail) {

empty.wait(lock);
}
item = buf[front % MAX];
front++;
full.signal(lock);
lock.release();
return item;

}

put(item) {
lock.acquire();
if ((tail – front) == MAX) {

full.wait(lock);
}
buf[last % MAX] = item;
last++;
empty.signal(lock);

// CAREFUL: someone else ran
lock.release();

}



Pitfalls



Common Case Rules
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Implementing Synchronization



Implementing Synchronization

Take 1: using memory load/store

– See too much milk solution/Peterson’s algorithm

Take 2: 

Lock::acquire() 

{ disable interrupts }

Lock::release() 

{ enable interrupts }

Two variations



Limitations

• Keep code short

• Trust the kernel to do this

• User threads: not so much

• Multiprocessors? Problem

• Spin or Block?

– If lock is busy on a uniprocessor, why should 
acquire keep trying?



Lock Implementation, Uniprocessor

Lock::acquire() { 
disableInterrupts(); 
if (value == BUSY) { 

waiting.add(myTCB);
myTCB->state = WAITING;
next = readyList.remove();
switch(myTCB, next);
myTCB->state = RUNNING;

} else { 
value = BUSY; 

} 
enableInterrupts(); 

}

Lock::release() { 
disableInterrupts();
if (!waiting.Empty()) { 

next = waiting.remove();
next->state = READY;    
readyList.add(next); 

} else {
value = FREE; 

} 
enableInterrupts(); 

} 

If we suspend with interrupts turned off, what must be true?

Why only switch in acquire?



Multiprocessor

• Interrupts won’t work on a multiprocessor
• Read-modify-write instructions: h/w support

– Atomically read a value from memory, operate on it, and then 
write it back to memory

– + Can be called from user code
– Intervening instructions prevented in hardware

• Examples
– Test and set
– Compare and swap

• Any of these can be used for implementing locks and 
condition variables!

• Since we cannot disable interrupts, there must be some
amount of busy-waiting



Spinlocks
A spinlock is a lock where the processor waits in a loop for the 

lock to become free
– Assumes lock will be held for a short time
– Used to protect the CPU scheduler and to implement locks

Spinlock::Spinlock() { lockValue = FREE; }

Spinlock::acquire() {
// TSL returns old value, sets new value to BUSY as a side-effect
while (testAndSet(&lockValue) == BUSY);  }

;

Spinlock::release() { lockValue = FREE; }



How many spinlocks?

• Various data structures to protect
– Protect user data A: use Lock X 

– Protect Lock X internals

– Protect List of threads ready to run

• One spinlock 

• Bottleneck!

• Instead:
– Want higher-level lock to block

– One spinlock per lock to protect access to lock internal state

– One spinlock for the scheduler ready list



Lock Implementation, Multiprocessor

Lock::acquire() { 
disableInterrupts();
spinLock.acquire();
if (value == BUSY) { 

waiting.add(myTCB);
suspend(&spinLock);

} else { 
value = BUSY; 

}
spinLock.release();
enableInterrupts(); 

}

Lock::release() { 
disableInterrupts();
spinLock.acquire();
if (!waiting.Empty()) { 

next = waiting.remove();    
scheduler->makeReady(next);

} else {
value = FREE; 

} 
spinLock.release();
enableInterrupts(); 

} 

Is this lock implemented in kernel or user space?

why do I pass
spinLock?

Why disable ints?



Lock Implementation, Multiprocessor

Sched::suspend(SpinLock ∗lock) { 
TCB ∗next; 

disableInterrupts();
schedSpinLock.acquire();
lock−>release();
myTCB−>state = WAITING;
next = readyList.remove();
thread_switch(myTCB, next);
myTCB−>state = RUNNING; 
schedSpinLock.release();
enableInterrupts(); 

} 

Sched::makeReady(TCB ∗thread) { 

disableInterrupts ();
schedSpinLock.acquire();
readyList.add(thread);
thread−>state = READY;
schedSpinLock.release();
enableInterrupts();

}

next_thread needs to release schedSpinLock



Lock Implementation, Linux

• Most locks are free most of the time
– Why?
– Kernel and good programmers keep critical sections short!
– Linux implementation takes advantage of this fact

• Fast path (common case)
– If lock is FREE, and no one is waiting, two instructions to 

acquire the lock: no spinlock or disabling interrupts
– If no one is waiting, two instructions to release the lock
– load/store solution ~ no more milk

• Slow path
– If lock is BUSY or someone is waiting, use multiprocessor 

version



Lock Implementation, Linux

struct mutex { 

/∗ 1: unlocked ; 0: locked; 
negative : locked, 
possible waiters ∗/ 

atomic_t count; 

spinlock_t wait_lock;

struct list_head wait_list;

}; 

// atomic decrement

// %eax is pointer to lock->count 

lock decl (%eax) 

jns 1f // jump if not signed

// (i.e. if value is now 0) 

call slowpath_acquire

1: 



Semaphores

• Please look at them

• They are more for historical reasons as CVs are 
the synchronization of choice

• Rarely better: Ex. P 250


