Synchronization

Chapter 5 OSPP
Part |

Synchronization Motivation

When threads concurrently read/write shared
memory, program behavior is undefined

— Two threads write to the same variable; which one
should win?

Thread schedule is non-deterministic

— Behavior may change when program is re-run
Compiler/hardware instruction reordering

Multi-word operations are not atomic
eg.i=1+1

Question: Can this panic?

Thread 1 Thread 2
p = someComputation(); while (!plnitialized)
plnitialized = true; ;

g = someFunction(p);

Can p change? +———

if (g != someFunction(p))
panic

Why Reordering?

* Why do compilers reorder instructions?

— Efficient code generation requires analyzing
control/data dependency

* Why do CPUs reorder instructions?

— Out order execution for efficient pipelining and
branch prediction

Fix: memory barrier
— Instruction to compiler/CPU, x86 has one
— All ops before barrier complete before barrier returns
— No op after barrier starts until barrier returns

Too Much Milk Example

12:30
12:35
12:40
12:45
12:50
12:55

1:00

Person A

Look in fridge. Out of milk.
Leave for store.

Arrive at store.

Buy milk.

Arrive home, put milk away.

Person B

Look in fridge. Out of milk.
Leave for store.

Arrive at store.

Buy milk.

Arrive home, put milk away.
Oh no!

Definitions

Race condition: output of a concurrent program depends on the order
of operations between threads

Mutual exclusion: only one thread does a particular thing at a time

— Critical section: piece of code that only one thread can execute at once
Lock: prevent someone from doing something

— Lock before entering critical section, before accessing shared data

— Unlock when leaving, after done accessing shared data

— Wait if locked (all synchronization involves waiting!)

Desirable Properties

e Correctness property
— Someone buys if needed (liveness)
— At most one person buys (safety)

Too Much Milk, Try

* Try #1: leave a note

* Both threads do this ...
if (Inote)
if (!milk) {
leave note
buy milk
remove note

Too Much Milk, Try #2

Thread A Thread B
leave note A leave note B
if (Inote B) { if (InoteA) {
if (!milk) if (!milk)
buy milk buy milk
} }

remove note A remove note B

Too Much Milk, Try #3

Thread A Thread B

leave note A leave note B

while (note B) // X if (InoteA){ //Y
do nothing; if (!milk)

if (!milk) buy milk
buy milk; }

remove note A remove note B

Can guarantee at X and Y that either:
(i) Safe for me to buy
(ii) Other will buy, ok to quit

Lessons

e Solution is complicated

— “obvious” code often has bugs

 Modern compilers/architectures reorder
Instructions

— Making reasoning even more difficult

* Generalizing to many threads/processors

— Even more complex: see Peterson’s algorithm

Roadmap

Concurrent Applications

Shared Objects

Bounded Buffer Barrier

Synchronization Variables

Semaphores Locks Condition Variables

Atomic Instructions

Interrupt Disable Test-and-Set

Hardware

Multiple Processors Hardware Interrupts

Locks

* Lock::acquire

— wait until lock is free, then take it, atomically

e Lock::release

— release lock, waking up anyone waiting for it
1. At most one lock holder at a time (safety)

2. If no one holding, acquire gets

3. If all lock holders finish and no
waiters, waiter eventually gets
fairness)

ocC
Nig

OC

K (progress)
ner priority

K (progress or

Atomicity

e All-or-nothing
* |n our context:

— Set of instructions that are executed as a group OR
— System will ensure that this appears to be so

Question: Why only Acquire/Release

* Suppose we add a method to a lock, to ask if the
lock is free. Suppose it returns true. Is the lock:

— Free?
— Busy?
— Don’t know?

* Very risky!
if (test lock)

acquire ...

Too Much Milk, #4

Locks allow concurrent code to be much simpler:
lock.acquire();
if (!milk)
buy milk
lock.release();

Lock Example: Malloc/Free

char *malloc (n) { void free(char *p) {
heaplock.acquire(); heaplock.acquire();
p = allocate memory put p back on free list
heaplock.release(); heaplock.release();
return p; }

Synchronization

Chapter 5 OSPP
Part Il

Example: Bounded Buffer

tryget() { tryput(item) {
item = NULL; lock.acquire();
lock.acquire(); if ((tail — front) < size) {
if (front < tail) { buf[tail % MAX] = item;
item = buf[front % MAX]; tail++;
front++; }
} lock.release();
lock.release(); }

return item;

}
Initially: front = tail = 0; lock = FREE; MAX is buffer capacity

Condition Variables

Waiting inside a critical section

— Called only when holding a lock

Wait: atomically release lock and relinquish
processor

— Reacquire the lock when wakened
Signal: wake up a waiter, if any
Broadcast: wake up all waiters, if any

Example: Bounded Buffer

get() { put(item) {
lock.acquire(); lock.acquire();
while (front == tail) { while ((tail — front) == MAX) {

empty.wait(&lock); full.wait(&lock);

} }
item = buf[front % MAX]; buf[tail % MAX] = item;
front++; tail++;
full.signal(lock); empty.signal(lock);
lock.release(); lock.release();
return item; }

}

Initially: front = tail = 0; MAX is buffer capacity
empty/full are condition variables

Condition Variable Design Pattern

methodThatWaits() { methodThatSignals() {
lock.acquire(); lock.acquire();
// Read/write shared state // Read/write shared state
while (!testSharedState()) { If (testSharedState())

cv.wait(&lock); cv.signal(&lock);

} not all impls require /
// Read/write shared state // Read/write shared state
lock.release(); lock.release();

} }

Pre/Post Conditions

What is state of the bounded buffer at lock
acquire?

— front <= tail

— front + MAX >= tail

These are also true on return from wait
And at lock release
Allows for proof of correctness

Condition Variables

* ALWAYS hold lock when calling wait, signal,
broadcast

— Condition variable is sync FOR shared state
— ALWAYS hold lock when accessing shared state

* Condition variable is memoryless

— |If signal when no one is waiting, no op
— If wait before signal, waiter wakes up

* Wait atomically releases lock
— What if wait (i.e. block), then release?
— What if release, then wait (i.e. block)?

Condition Variables, cont’d

 When a thread is woken up from wait, it may not run
immediately

— Signal/broadcast put thread on ready list
— When lock is released, anyone might acquire it

 Wait MUST be in aloop
while (needToWait()) {
condition.Wait(lock);

}

* Simplifies implementation
— Of condition variables and locks
— Of code that uses condition variables and locks

Spurious Wakeup

Thread can be woken up “prematurely”
— Unclear when exactly this can ever happen?
— E.g. signal arrives when holding a user level lock ...

Postels Law

Assumption of spurious wakeups forces thread
to be conservative in what it does: set
condition when notifying other threads, and
liberal in what it accepts: check the condition
upon any return

Java claims this is possible!

Structured Synchronization

1. Identify objects or data structures that can be accessed by multiple
threads concurrently

2. Add locks to object/module
— Grab lock on start to every method/procedure
— Release lock on finish

3. If need to wait
— while(needToWait()) { condition.Wait(lock); }
— Do not assume when you wake up, signaller just ran

4. If do something that might wake someone up (hint)
— Signal or Broadcast

5. Always leave shared state variables in a consistent state
— When lock is released, or when waiting

Mesa vs. Hoare semantics

* Mesa
— Signal puts waiter on ready list
— Signaller keeps lock and processor

* Hoare
— Signal gives processor and lock to waiter

— When waiter finishes, processor/lock given back
to signaller

FIFO Bounded Buffer
(Hoare semantics)

get() { put(item) {
lock.acquire(); lock.acquire();
if (front == tail) { if ((tail — front) == MAX) {

empty.wait(lock); full.wait(lock);

} }
item = buf[front % MAX]; buf[last % MAX] = item;
front++; last++;
full.signal(lock); empty.signal(lock);
lock.release(); // CAREFUL: someone else ran
return item; lock.release();

} }

Pitfalls

Common Case Rules

Synchronization

Chapter 5 OSPP
Part |l

Implementing Synchronization

Concurrent Applications

Shared Objects

Bounded Buffer Barrier

Synchronization Variables

Semaphores Locks Condition Variables

/

Atomic Instructions

v

Interrupt Disable Test-and-Set

Hardware

Multiple Processors Hardware Interrupts

Implementing Synchronization

Take 1: using memory load/store

— See too much milk solution/Peterson’s algorithm

Take 2:
Lock::acquire()
{ disable interrupts }
Lock::release()
{ enable interrupts }
Two variations

Limitations

Keep code short

Trust the kernel to do this
User threads: not so much
Multiprocessors? Problem

Spin or Block?

— If lock is busy on a uniprocessor, why should
acquire keep trying?

Lock Implementation, Uniprocessor

Lock::acquire() { Lock::release() {

disablelnterrupts(); disablelnterrupts();

if (value == BUSY) { if (!waiting.Empty()) {
waiting.add(myTCB); next = waiting.remove();
myTCB->state = WAITING; next->state = READY;
next = readyList.remove(); readyList.add(next);
switch(myTCB, next); } else {
myTCB->state = RUNNING; value = FREE;

} else { }
value = BUSY: enablelnterrupts();

}
}enablelnterrupts(); Why only switch in acquire?

If we suspend with interrupts turned off, what must be true?

Multiprocessor

Interrupts won’t work on a multiprocessor

Read-modify-write instructions: h/w support

— Atomically read a value from memory, operate on it, and then
write it back to memory

— + Can be called from user code
— Intervening instructions prevented in hardware

Examples
— Test and set
— Compare and swap

Any of these can be used for implementing locks and
condition variables!

Since we cannot disable interrupts, there must be some
amount of busy-waiting

Spinlocks

A spinlock is a lock where the processor waits in a loop for the
lock to become free

— Assumes lock will be held for a short time
— Used to protect the CPU scheduler and to implement locks

Spinlock::Spinlock() { lockValue = FREE; }

Spinlock::acquire() {
// TSL returns old value, sets new value to BUSY as a side-effect
while (testAndSet(&lockValue) == BUSY); }

’

Spinlock::release() { lockValue = FREE; }

How many spinlocks?

Various data structures to protect
— Protect user data A: use Lock X

— Protect Lock X internals

— Protect List of threads ready to run

One spinlock
Bottleneck!

Instead:
— Want higher-level lock to block

— One spinlock per lock to protect access to lock internal state
— One spinlock for the scheduler ready list

Lock Implementation, Multiprocessor

Lock::acquire() { Lock::release() {
disablelnterrupts(); disablelnterrupts();
spinLock.acquire(); spinLock.acquire();
if (value == BUSY) { if ('waiting.Empty()) {

waiting.add(myTCB); next = waiting.remove();
suspend(&spinLock); scheduler->makeReady(next);
}else { S~ } else {
value = BUSY: why do | pass value = FREE;
} spinLock?)
spinLock.release(); spinLock.release();
enablelnterrupts(); enablelnterrupts();
} }

Is this lock implemented in kernel or user space?

Why disable ints?

Lock Implementation, Multiprocessor

Sched::suspend(SpinLock *lock) { Sched::makeReady(TCB *thread) {
TCB *next;

disablelnterrupts(); disablelnterrupts ();
schedSpinLock.acquire(); schedSpinLock.acquire();
lock—>release(); readyList.add(thread);
myTCB->state = WAITING; thread->state = READY;
next = readyList.remove(); schedSpinLock.release();
thread_switch(myTCB, next); enablelnterrupts();
myTCB->state = RUNNING; }

schedSpinLock.release();
enablelnterrupts();

next_thread needs to release schedSpinLock

Lock Implementation, Linux

* Most locks are free most of the time
— Why?
— Kernel and good programmers keep critical sections short!
— Linux implementation takes advantage of this fact

e Fast path (common case)

— If lock is FREE, and no one is waiting, two instructions to
acquire the lock: no spinlock or disabling interrupts

— If no one is waiting, two instructions to release the lock
— load/store solution ~ no more milk

* Slow path

— If lock is BUSY or someone is waiting, use multiprocessor
version

Lock Implementation, Linux

struct mutex { // atomic decrement

/* 1: unlocked ; O: locked; // %eax is pointer to lock->count
negative : locked,

possible waiters */ lock decl (%eax)

jns 1f // jump if not signed
// (i.e. if value is now 0)

call slowpath_acquire
1:

atomic_t count;
spinlock_t wait_lock;
struct list_head wait_list;

5

Semaphores

e Please look at them

* They are more for historical reasons as CVs are
the synchronization of choice

e Rarely better: Ex. P 250

