Threads and Concurrency

Chapter 4 OSPP
Part |

Motivation

e Operating systems (and application programs)
often need to be able to handle multiple things
happening at the same time

— Process execution, interrupts, background tasks, system
maintenance

* Humans are not very good at keeping track of
multiple things happening simultaneously

* Threads are an abstraction to help bridge this gap

Why Concurrency?

Servers

— Multiple connections handled simultaneously
Parallel programs

— To achieve better performance

Programs with user interfaces

— To achieve user responsiveness while doing
computation

Network and disk bound programs
— To hide network/disk latency

Definitions

* Athread is a single execution sequence that
represents a separately schedulable task

— Single execution sequence: familiar programming
model

— Separately schedulable: OS can run or suspend a
thread at any time

* Protection is an orthogonal concept

— Can have one or many threads per protection
domain

Hmmm: sounds familiar

* |sit a kind of interrupt handler?
* How is it different?

Threads in the Kernel and at User-Level

e Multi-threaded kernel

— multiple threads, sharing kernel data structures,
capable of using privileged instructions

* Multiprocessing kernel
— Multiple single-threaded processes
— System calls access shared kernel data structures

* Multiple multi-threaded user processes

— Each with multiple threads, sharing same data
structures, isolated from other user processes

— Threads can be user-provided or kernel-provided

Thread Abstraction

* Infinite number of processors
* Threads execute with variable speed

— Programs must be designed to work with any schedule
1

Programmer Abstraction Physical Reality

...

Running Ready
Threads Threads

Possible Executions

One Execution

Thread 1 []

Thread 2]

Thread 3 []
Another Execution

Thread 1 [| 1]

Thread 2 [] [L]

Thread 3 [] 0 []

Another Execution

Thread 1 []
Thread2 []
Thread 3 []

Thread Operations

thread create (thread, func, args)
— Create a_new thread to run func(args)
thread vield ()

— Relinqugh processor voluntarily
thread join (thread)

— In parent, wait for forked thread to exit, then
return

thread exit
— Quit thread and clean up, wake up joiner if any

Example: threadHello
(just for example, needs a little TLC)

#define NTHREADS 10
thread t threads[NTHREADS];
main () {

for (i = 0; i < NTHREADS; i++)
thread_create(&threads[i], &go, 1);

for (1 = 0; 1 < NTHREADS; i++) {
exitValue = thread join(threads[i]);

printf ("Thread %d returned with %$1d\n", i,
exitValue) ;

}
printf ("Main thread done.\n");

}

volid go (int n) {
printf ("Hello from thread %d\n", n);
thread ex1t (100 + n);
// REACHED?

threadHello: Example Output

bash-3.2$./threadHello

* Why must “thread returned” zello from thread o

Hello from thread 1

: : ‘p Thread 0 returned 100
prlnt In Order' Hello from thread 3
Hello from thread 4

— What is maximum # of threads Thread 1 returned 101

Hello from thread 5

in the system when thread 5 Hello from thread

Hello from thread

printS he”O? Hello from thread

Hello from thread

~] 00 Oy N

e e Hello from thread 9
_ Mlnlmum? Thread 2 returned 102
Thread
Thread
Thread
Thread

returned 103
returned 104
returned 105
returned 106
Thread returned 107
Thread returned 108
Thread 9 returned 109
Main thread done.

o JdJon = W

Fork/Join Concurrency

 Threads can create children, and wait for their
completion

* Examples:

— Web server: fork a new thread for every new
connection

* As long as the threads are completely independent
— Merge sort
— Parallel memory copy

Example

e Zeroing memory of a process
e Why?

bzero with fork/join concurrency

vold blockzero (unsigned char *p, 1nt length) {
int 1, Jj;
thread t threads[NTHREADS];
struct bzeroparams params [NTHREADS];

// For simplicity, assumes length is divisible by NTHREADS.
for (i = 0, j = 0; 1 < NTHREADS; i++,
j += length/NTHREADS) {
params [i] .buffer = p + 1 * length/NTHREADS;
params[i] .length = length/NTHREADS;

thread create p(&(threads[i]), &zero go,
¶ms[1i]);

}
for (1 = 0, 1 < NTHREADS; 1i++) {
thread join(threads([i]);

Thread Data Structures

Shared
State

Code

Thread 1’s
Per-Thread State

Global
Variables

Thread Control
Block (TCB)

Stack
Information

Saved
Registers

Thread
Metadata

Thread 2’s

Per-Thread State

Heap

Thread Control
Block (TCB)

Stack
Information

Saved
Registers

Thread
Metadata

id, status, ...

Thread Lifecycle

Scheduler
: Resumes Thread :
Thread Creation [Nrrremrermresnissssssrensens » Thread Exit
OO OOC OO 0L » F{eady S WL LE La1 Tl T B .
thread_create() _ thread_exit
Thread Yield/Scheduler

A Suspends Thread
: thread_yield()

Event Occurs Thread Waits for Event
OtherThread Calls - / thread_join()
thread_join()

Thread Scheduling

When a thread blocks or yields or is de-scheduled
by the system, which one is picked to run next?

Preemptive scheduling: preempt a running thread

Non-preemptive: thread runs until it yields or
blocks

Idle thread runs until some thread is ready ...
Priorities? All threads may not be equal

— e.g. can make bzero threads low priority (background)

Thread Scheduling (cont’d)

* Priority scheduling
— threads have a priority
— scheduler selects thread with highest priority to run

— preemptive or non-preemptive

* Priority inversion
— 3 threads, t1, t2, and t3 (priority order — low to high)
— t1is holding a resource (lock) that t3 needs
— t3is obviously blocked
— t2 keeps on running!

* How did t1 get lock before t3?

How would you solve it?

Threads and Concurrency

Chapter 4 OSPP
Part Il

Implementing Threads: Roadmap

* Kernel threads + single threaded process
— Thread abstraction only available to kernel

— To the kernel, a kernel thread and a single threaded
user process look quite similar

* Multithreaded processes using kernel threads
— Linux, MacOS
— Kernel thread operations available via syscall

 Multithreaded processes using user-level threads

— Thread operations without system calls

Multithreaded OS Kernel; Single

threaded process (i.e. no threads)

Code Kernel Thread 1 Kernel Thread 2 Kernel Thread 3 Process 1 Process 2
Kernel Globals [tc2 | [1ces| [eee1| [peB2]
Stack Stack Stack Stack Stack
Heap |:::::::::::| |:::::::::::| ‘:::::::::::‘ ‘ | |
Process 1 Process 2
User-Level Processes Thread Thread
Stack Stack
OS schedules either a kernel thread or a — —
ode ode
user process
Globals Globals
Heap Heap

Multithreaded processes using kernel
threads

Code Kernel Thread 1 Kernel Thread 2 Kernel Thread 3 Process 1 Process 2
S S S
Kernel Globals [Tce1 | [7182 | | 13| [7cBia]| [TcB1B| [TcB2A| [TCB2B]
Stack Stack Stack Stack Stack Stack Stack
e | [z |] e]

User-Level Processes Thread A Thread B Thread A Thread B

OS schedules either a kernel thread or a
user thread (within a user process)
no user-land threads

Implementing Threads in the Kernel

Process Thread
Kernel
—
Process Thread
table table

A threads package managed by the kernel

Implementing Threads Purely in User Space

Process Thread
f \\ /
User
space <
. =
OS schedules either a kernel
thread or a user process =
) Kernel
(user library schedules threads) gpace Kernel
user-land case / \\
Run-time Thread Process
system table table

A user-level threads package

25

Kernel threads

All thread management done in kernel
Scheduling is usually preemptive

Pros:
— can block!

— when a thread blocks or yields, kernel can select any
thread from same process or another process to run

Cons:
— cost: better than processes, worse than procedure call
— fundamental limit on how many — why

— param checkin%of system calls vs. library call — why is
this a problem:

User threads

* User
— OS has no knowledge of threads
— all thread management done by run-time library

* Pros:
— more flexible scheduling
— more portable
— more efficient
— custom stack/resources

* Cons:
— blocking is a problem!
— need special system calls!

— poor sys integration: can’t exploit
multiprocessor/multicore as easily

Implementing threads

* thread fork(func, args) [create]
— Allocate thread control block
— Allocate stack
— Build stack frame for base of stack (stub)
— Put func, args on stack
— Put thread on ready list
— Will run sometime later (maybe right away!)

e stub (func, args)
— Call (*func)(args)
— If return, call thread exit ()

e Thread create code

http://ospp.cs.washington.edu/figures/Concurrency/ThreadCreation.cc

Implementing threads (cont’d)

* thread exit

— Remove thread from the ready list so that it will never
run again

— Free the per-thread state allocated for the thread

* Why can’t thread itself do the freeing?

— deallocate stack: can’t resume execution after an
Interrupt

— mark us finished and have another thread clean us up

Thread Stack

 What if a thread puts too many procedures or
data on its stack?
— User stack uses virt. memory: tempting to be greedy
— Problem: many threads

— Limit large objects on the stack (make static or put on
the heap)

— Limit number of threads

* Kernel threads use physical memory and they are
really careful

Problems with Sharing: Per thread locals

* errnois a problem!
— errno (thread _id) ...
— give each thread a copy of certain globals

* Heap
— shared heap

— local heap : allows concurrent allocation (nice on a
multiprocessor)

Thread Context Switch

* Voluntary
—thread yield
—thread join (if child is not done yet)

* |nvoluntary
— Interrupt or exception or blocking
— Some other thread is higher priority

Voluntary thread context switch

Save registers on old stack
Switch to new stack, new thread
Restore registers from new stack

Return (pops return address off the stack, ie.
sets PC)

Exactly the same with kernel threads or user
threads

x86 switch threads

Thread switch code: high level

Save caller’s register state

NOTE: %eax, etc. are ephemeral
pushl %ebx

pushl %ebp

pushl %esi

pushl %edi

Get offsetof (struct thread, stack)
mov thread_stack_ofs, %edx

Save current stack pointer to old
thread's stack, if any.

movl SWITCH_CUR(%esp), %eax
movl %esp, (%eax,%edx,1)
#esp saved into TCB

Change stack pointer to new
thread's stack

this also changes currentThread
movl SWITCH_NEXT(%esp), %ecx
movl (%ecx,%edx,1), %esp

#TCB esp moved to esp

Restore caller's register state.
popl %edi

popl %esi

popl %ebp

popl %ebx

#tricky flow

ret

http://ospp.cs.washington.edu/figures/Concurrency/ThreadYield.cc

vield

Thread vield code

Why is state set to running and for whom?

Who turns interrupts back on?

Note: this function is reentrant!

http://ospp.cs.washington.edu/figures/Concurrency/ThreadYield.cc

Threads and Concurrency

Chapter 4 OSPP
Part Il

thread join

* Block until children are finished

e System call into the kernel
— May have to block
* Nice optimization:
— If children are done, store their return values in
user address space
— Why is that useful?

— Or spin a few vs before actually calling join

Multithreaded User Processes (Take 1)

e User thread = kernel thread (Linux, MacOS)

— System calls for thread fork, join, exit (and lock,
unlock,...)

— Kernel does context switch

— Simple, but a lot of transitions between user and
kernel mode

— + block, +multiprocessors

Multithreaded User Processes (Take 2)

e Green threads (early Java)
— User-level library, within a single-threaded process
— Blocking is tricky!
— Library does thread context switch

— Preemption via upcall/UNIX signal on timer
interrupt

— Use multiple processes for parallelism
* Shared memory region mapped into each process

Multithreaded User Processes (Take 3)

e Scheduler activations (Windows 8)
— Kernel allocates vprocessors to user-level library
— User thread library implements context switch
— User thread library decides what thread to run next

* Upcall whenever kernel needs a user-level
scheduling decision

e User process assigned a new vprocessor
e vprocessor removed from process
e System call blocks in kernel

Best of Both Worlds

e Scheduler Activations

Scheduler Activations

* |dea:

— Create a structure that allows information to flow between:
— user-space (thread library) and kernel

* One-way flow is common ... system call
e Other way is uncommon upcall

Scheduler Activations Cont’d

Two new things:

Activation: structure that allows information/events to
flow (holds key information, e.g. stacks)

Virtual processor: abstraction of a physical machine; gets
“allocated” to an application

— means any threads attached to it will run on that
processor

— want to run on multiple processors — ask OS for > 1 VP

Example

T,i[,nl]e User Program
1y 2) \\,, (3))
User-Level &4
Runtime : : N
System) iy scheduler
" A (B) activations
Operating (A)
System Add Add
Kemel Processor | Processor

Processors . P1 . P2

 Kernel provides two processors to the application
— upcall to scheduler: user library picks two threads to run

 Now, suppose T1 blocks

Time
T2

User Program

j@

A’s thread
has blocked

e T1 blocks in the kernel

— kernel creates a SA; makes upcall on the processor running T1

— user-level scheduler picks another thread (T3) to run on that
processor

— T1 put on blocked list

Time

User Program

T3
User-Level -
Runtime |
System
l? 13 44
(A) By T [
Operating A’s thread
System and B’s
Kernel thread can
continue
Processors \”

P1

* |/O for (T1) completes

— Notification requires a processor; kernel preempts one of
them (P2 —T2), does upcall

— Problem : suppose no processors! — must wait until kernel
gives one

— Two threads back on the ready list! (T1 and T2: why?)

Example

-------------------- UserProgam | L€
el
© (D)

e User library picks a thread to run (resume T1)

Alternative Abstractions

* Asynchronous I/O and event-driven programming
* Data parallel programming

— All processors perform same instructions in parallel on a
different part of the data

T = A | X B

1\

— Have you seen this before?

* bzero

Event-driven

Poll or interrupts (Signals)

Non-blocking I/O events get initiated

—e.g. initiated by aio read’s

Check/wait for I/O event completion/arrival

— e.g. can poll and/or block smartly: e.g. Unix select

— e.g. can await a signal SIGIO

Thread way

— Just create threads and have them do blocking
synchronous calls (e.g. read)

Performance Comparison

Event-driven: explicit state management vs.
automatic state savings in threads
Responsiveness

— Large tasks may have to be decomposed for event-
driven programming to efficiently save state

Performance: latency

— thread could be slower due to stack allocation, but
gap is closing particularly with user threads

Performance: parallelism

— events only work with a single core! but are great for
servers that need to multiplex cores

