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Motivation

• Operating systems (and application programs) 
often need to be able to handle multiple things 
happening at the same time

– Process execution, interrupts, background tasks, system 
maintenance 

• Humans are not very good at keeping track of 
multiple things happening simultaneously

• Threads are an abstraction to help bridge this gap



Why Concurrency?

• Servers
– Multiple connections handled simultaneously

• Parallel programs
– To achieve better performance

• Programs with user interfaces
– To achieve user responsiveness while doing 

computation

• Network and disk bound programs
– To hide network/disk latency



Definitions

• A thread is a single execution sequence that 
represents a separately schedulable task
– Single execution sequence: familiar programming 

model

– Separately schedulable: OS can run or suspend a 
thread at any time

• Protection is an orthogonal concept
– Can have one or many threads per protection 

domain



Hmmm: sounds familiar

• Is it a kind of interrupt handler?

• How is it different?



Threads in the Kernel and at User-Level

• Multi-threaded kernel
– multiple threads, sharing kernel data structures, 

capable of using privileged instructions

• Multiprocessing kernel
– Multiple single-threaded processes

– System calls access shared kernel data structures

• Multiple multi-threaded user processes
– Each with multiple threads, sharing same data 

structures, isolated from other user processes

– Threads can be user-provided or kernel-provided



Thread Abstraction

• Infinite number of processors

• Threads execute with variable speed

– Programs must be designed to work with any schedule



Possible Executions



Thread Operations

• thread_create (thread, func, args)
– Create a new thread to run func(args)

• thread_yield ()
– Relinquish processor voluntarily

• thread_join (thread)
– In parent, wait for forked thread to exit, then 

return

• thread_exit

– Quit thread and clean up, wake up joiner if any



Example: threadHello
(just for example, needs a little TLC)

#define NTHREADS 10

thread_t threads[NTHREADS];

main() {

for (i = 0; i < NTHREADS; i++)         
thread_create(&threads[i], &go, i);

for (i = 0; i < NTHREADS; i++) {

exitValue = thread_join(threads[i]);

printf("Thread %d returned with %ld\n", i, 
exitValue);

}

printf("Main thread done.\n");

}

void go (int n) {

printf("Hello from thread %d\n", n);

thread_exit(100 + n);

// REACHED?

}



threadHello: Example Output

• Why must “thread returned” 
print in order?

– What is maximum # of threads 
in the system when thread 5 
prints hello?

– Minimum?



Fork/Join Concurrency

• Threads can create children, and wait for their 
completion

• Examples:

– Web server: fork a new thread for every new 
connection

• As long as the threads are completely independent

– Merge sort

– Parallel memory copy



Example

• Zeroing memory of a process

• Why?



bzero with fork/join concurrency
void blockzero (unsigned char *p, int length) {

int i, j;

thread_t threads[NTHREADS];

struct bzeroparams params[NTHREADS];

// For simplicity, assumes length is divisible by NTHREADS.

for (i = 0, j = 0; i < NTHREADS; i++, 

j += length/NTHREADS) {

params[i].buffer = p + i * length/NTHREADS;

params[i].length = length/NTHREADS;

thread_create_p(&(threads[i]), &zero_go,  
&params[i]);

}

for (i = 0; i < NTHREADS; i++) {

thread_join(threads[i]);

}

}



Thread Data Structures

id, status, …



Thread Lifecycle



Thread Scheduling

• When a thread blocks or yields or is de-scheduled 
by the system, which one is picked to run next? 

• Preemptive scheduling: preempt a running thread

• Non-preemptive: thread runs until it yields or 
blocks

• Idle thread runs until some thread is ready …

• Priorities? All threads may not be equal

– e.g. can make bzero threads low priority (background)

when        gets de-scheduled …



Thread Scheduling (cont’d) 

• Priority scheduling
– threads have a priority
– scheduler selects thread with highest priority to run
– preemptive or non-preemptive

• Priority inversion
– 3 threads, t1, t2, and t3 (priority order – low to high)
– t1 is holding a resource (lock) that t3 needs
– t3 is obviously blocked
– t2 keeps on running!

• How did t1 get lock before t3?



How would you solve it?
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Implementing Threads: Roadmap

• Kernel threads + single threaded process

– Thread abstraction only available to kernel

– To the kernel, a kernel thread and a single threaded 
user process look quite similar

• Multithreaded processes using kernel threads

– Linux, MacOS

– Kernel thread operations available via syscall

• Multithreaded processes using user-level threads

– Thread operations without system calls



Multithreaded OS Kernel; Single 
threaded process (i.e. no threads)

OS schedules either a kernel thread or a 
user process



Multithreaded processes using kernel 
threads

OS schedules either a kernel thread or a 
user thread (within a user process)

no user-land threads



24

Implementing Threads in the Kernel

A threads package managed by the kernel



25

Implementing Threads Purely in User Space

A user-level threads package

OS schedules either a kernel 
thread or a user process 
(user library schedules threads)

user-land case



Kernel threads

• All thread management done in kernel
• Scheduling is usually preemptive

• Pros:
– can block!
– when a thread blocks or yields, kernel can select any 

thread from same process or another process to run

• Cons: 
– cost: better than processes, worse than procedure call
– fundamental limit on how many – why
– param checking of system calls vs. library call – why is 

this  a problem?



User threads

• User
– OS has no knowledge of threads
– all thread management done by run-time library

• Pros:
– more flexible scheduling
– more portable 
– more efficient
– custom stack/resources

• Cons:
– blocking is a problem!
– need special system calls!
– poor sys integration: can’t exploit 

multiprocessor/multicore as easily



Implementing threads

• thread_fork(func, args) [create]

– Allocate thread control block

– Allocate stack

– Build stack frame for base of stack (stub)

– Put func, args on stack

– Put thread on ready list

– Will run sometime later (maybe right away!)

• stub (func, args)
– Call (*func)(args)

– If return, call thread_exit()



• Thread create code

http://ospp.cs.washington.edu/figures/Concurrency/ThreadCreation.cc


Implementing threads (cont’d)

• thread_exit

– Remove thread from the ready list so that it will never 
run again

– Free the per-thread state allocated for the thread

• Why can’t thread itself do the freeing?

– deallocate stack: can’t resume execution after an 
interrupt

– mark us finished and have another thread clean us up



Thread Stack

• What if a thread puts too many procedures or 
data on its stack?

– User stack uses virt. memory: tempting to be greedy

– Problem: many threads

– Limit large objects on the stack (make static or put on 
the heap)

– Limit number of threads

• Kernel threads use physical memory and they are 
*really* careful



Problems with Sharing: Per thread locals

• errno is a problem!

– errno (thread_id) …

– give each thread a copy of certain globals

• Heap 

– shared heap

– local heap : allows concurrent allocation (nice on a 
multiprocessor)



Thread Context Switch

• Voluntary
– thread_yield

– thread_join (if child is not done yet)

• Involuntary

– Interrupt or exception or blocking

– Some other thread is higher priority



Voluntary thread context switch

• Save registers on old stack

• Switch to new stack, new thread

• Restore registers from new stack

• Return (pops return address off the stack, ie. 
sets PC)

• Exactly the same with kernel threads or user 
threads



x86 switch_threads

# Save caller’s register state
#  NOTE: %eax, etc. are ephemeral
pushl %ebx
pushl %ebp
pushl %esi
pushl %edi

# Get offsetof (struct thread, stack)
mov thread_stack_ofs, %edx
# Save current stack pointer to old 

thread's stack, if any.
movl SWITCH_CUR(%esp), %eax
movl %esp, (%eax,%edx,1)
#esp saved into TCB

# Change stack pointer to new 
thread's stack

# this also changes currentThread
movl SWITCH_NEXT(%esp), %ecx
movl (%ecx,%edx,1), %esp
#TCB esp moved to esp

# Restore caller's register state.
popl %edi
popl %esi
popl %ebp
popl %ebx
#tricky flow
ret

Thread switch code: high level

http://ospp.cs.washington.edu/figures/Concurrency/ThreadYield.cc


yield

• Thread yield code

• Why is state set to running and for whom?

• Who turns interrupts back on?

• Note: this function is reentrant!

http://ospp.cs.washington.edu/figures/Concurrency/ThreadYield.cc
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thread_join

• Block until children are finished

• System call into the kernel 

– May have to block

• Nice optimization:

– If children are done, store their return values in 
user address space

– Why is that useful?

– Or spin a few us before actually calling join



Multithreaded User Processes (Take 1)

• User thread = kernel thread (Linux, MacOS)

– System calls for thread fork, join, exit (and lock, 
unlock,…)

– Kernel does context switch

– Simple, but a lot of transitions between user and 
kernel mode

– + block, +multiprocessors



Multithreaded User Processes (Take 2)

• Green threads (early Java)

– User-level library, within a single-threaded process

– Blocking is tricky!

– Library does thread context switch

– Preemption via upcall/UNIX signal on timer 
interrupt

– Use multiple processes for parallelism

• Shared memory region mapped into each process



Multithreaded User Processes (Take 3)

• Scheduler activations (Windows 8)
– Kernel allocates vprocessors to user-level library

– User thread library implements context switch

– User thread library decides what thread to run next

• Upcall whenever kernel needs a user-level 
scheduling decision
• User process assigned a new vprocessor

• vprocessor removed from process

• System call blocks in kernel



Best of Both Worlds

• Scheduler Activations



Scheduler Activations

• Idea:
– Create a structure that allows information to flow between:

– user-space (thread library) and kernel

• One-way flow is common … system call

• Other way is uncommon …. upcall



Scheduler Activations Cont’d
• Two new things:

• Activation: structure that allows information/events to 
flow (holds key information, e.g. stacks)

• Virtual processor: abstraction of a physical machine; gets 
“allocated” to an application 

– means any threads attached to it will run on that 
processor

– want to run on multiple processors – ask OS for > 1 VP



Example

• Kernel provides two processors to the application
– upcall to scheduler: user library picks two threads to run ….

• Now, suppose T1 blocks ….

P1 P2

scheduler
activations



• T1 blocks in the kernel
– kernel creates a SA; makes upcall on the processor running T1
– user-level scheduler picks another thread (T3) to run on that     

processor
– T1 put on blocked list

P1 P1P2



• I/O  for (T1) completes
– Notification requires a processor; kernel preempts one of 

them (P2 – T2), does upcall
– Problem : suppose no processors! – must  wait until kernel 

gives one
– Two threads back on the ready list! (T1 and T2: why?)

P2         P1 P2



Example

• User library picks a thread to run (resume T1)
P1                P2



Alternative Abstractions

• Asynchronous I/O and event-driven programming

• Data parallel programming

– All processors perform same instructions in parallel on a 
different part of the data

– Have you seen this before?

• bzero



Event-driven

• Poll or interrupts (Signals)

• Non-blocking I/O events get initiated
– e.g. initiated by aio_read’s

• Check/wait for I/O event completion/arrival
– e.g. can poll and/or block smartly: e.g. Unix select

– e.g. can await a signal SIGIO

• Thread way
– Just create threads and have them do blocking 

synchronous calls (e.g. read)



Performance Comparison

• Event-driven: explicit state management vs. 
automatic state savings in threads

• Responsiveness
– Large tasks may have to be decomposed for event-

driven programming to efficiently save state

• Performance: latency
– thread could be slower due to stack allocation, but 

gap is closing particularly with user threads

• Performance: parallelism
– events only work with a single core! but are great for 

servers that need to multiplex cores


