The Kernel (and Process) Abstraction

Chapter 2-3 OSPP
Part |

Announcements

* Today: kernel
— Asynchrony
— Processes
— Protection

Kernel

* The software component that controls the hardware
directly and implements the core privileged OS functions.

e Modern hardware has features that allow the OS kernel to
protect itself from untrusted user code.

Kernel Protection

* Reliability

— crashes

* Security

— Write to arbitrary disk (or memory) locations

* Privacy
— User files

Does kernel/OS teach any lessons | can use?

 Yes!

* Protection
— Trend is for apps to be mini-OS?
— Browser

* Resource management

— Trend is to give apps X resources and let them
figure out how to share

— User threads, virtual machines
* Asynchrony and many others

A Short Digression: Starting the Kernel:
Booting

Physical
Memory
(1)
BI0S copies 3108 non-vol ROM
Disk bootloader
greseeIss D Bootloader
Q instructions Virus check
(2) and data
Bootloader ... b Bootloader
OS KErNel e, copies 0S kernel
-3 0S kernel Virus check
LOQin @pp -eeeedessssceneen instructions
: and data

S R A
i 0S kernel copies

i login application

eeererrrerreereeeeeatensrenrrersanas »| Login app

instructions
and data

Challenge: Asynchrony: Device
Interrupts

* OS kernel needs to communicate with physical
devices

* Devices operate asynchronously from the CPU

— Polling: Kernel waits until I/O is done

— Interrupts: Kernel can do other work in the meantime
* Device access to memory

— Programmed 1/O: CPU reads and writes to device
— Direct memory access (DMA) by device

Device Interrupts

* How do device interrupts work?
— Where does the CPU run after an interrupt?
— What is the interrupt handler written in? C? Java?

— What stack does it use?

— Is the work the CPU had been doing before the
interrupt lost forever?

— If not, how does the CPU know how to resume
that work?

— Will come back to this soon

How it all happens

programmable interrupt controller (x86)

3. INT Vector k / I

CPU

Se1 PC To Value
From Jumg
FEuEtion

2.sends IRQ #
(interrupt request)

mm S E 1. user hits a key

CPU checks for interrupts after each instruction cycle
oops, looks like we are “polling” after all but in h/w ©

Device Driver and 1/O Interrupts

* Top half of driver called from syscall handler

— issues privileged instructions: read from disk, done

e Bottom half

— called when interrupt arrives
— interrupt handling: I/O completion or error recovery

Interrupt Handler

e Bottom half

— runs first called directly by hardware, saves state
of hardware, then enables top half to run

* Top half ~ interrupt handler specifics

— for an I/0O event: calls driver bottom half: e.g. data
copying

Buggy Device Drivers

Validate/inspect
User-level drivers
Running drivers in VM
Sandboxing

— mini-execution environment in the kernel

Challenge: Protection

e How do we execute code with restricted
privileges?

— Either because the code is buggy or if it might be
malicious

* Some examples:
— A script running in a web browser
— A program you just downloaded off the Internet
— A program you just wrote that you haven’t tested yet
— First see how OS does it

A Problem: both constrain and protect
process

Source
Code

Compiler

Executable
Image:
Instructions
and Data

Operating

System Copy

Physical

Memory

Machine
Instructions

Data

Heap

Stack

Machine
Instructions

Data

Heap

Stack

Operating
System
Kernel

Main Points

* Process concept

— A process is the OS abstraction for executing a
program with limited privileges but that is isolated

* Dual-mode operation: user vs. kernel

— Kernel-mode: execute with complete privileges

— User-mode: execute with fewer privileges

— Processor is a warden (OS) and an inmate (process)!
e Safe control transfer

— How do we switch from one mode to the other?

Process Abstraction

* Process: an instance of a program, running with
limited rights
— Thread: a sequence of instructions within a process
e Potentially many threads per process (for now 1:1)
— Address space: set of rights of a process

* Memory that the process can access

— Other permissions the process has (e.g., which
system calls it can make, what files it can access)

The Birth of a Program

myprogram.o

int j; object
const char* s = “hello\n”; assembler ‘ E file

int p() {
j = write(1, s, 6); 1
return(j); I 1
}

''''' libraries
o: and other
store this objects

store that 1
E program

push
myprogram

jsr _write N

) | et

etc.

myprogram.s

stub

Birth of a Process: Process State

Stored in PCB (Process Control Block)
Information associated with each process
* Program counter, stack pointer

* CPU registers

* CPU scheduling information

* Memory-management information

* Accounting information

* |/O status information

* Open files, signals (if UNIX)

Process API

* Very briefly

UNIX Process Management

UNIX fork — system call to create a copy of the
current process, and start it running

— No arguments!

UNIX exec — system call to change the program
being run by the current process

UNIX wait — system call to wait for a process to
finish

UNIX signal — system call to send a notification to
another process

UNIX/LINUX clone — similar to fork but used with
threads

Unix Fork/]

fork parent

initialize child
context

-

wait

xec/Exit/Wait

Example

fork chi

Id

exec

A 4

-

exit

\!!//
. |

int pid = fork();
Create a new process that is a clone of
its parent.

exec*(“program” [, argvp, envp]);
Overlay the calling process virtual
memory with a new program, and
transfer control to it.

exit(status);
Exit with status, destroying the process.

int pid = wait*(&status);
Wait for exit (or other status change) of
a child.

Corner cases: orphans and zombies

Example: Process Creation in Unix

int pid;
int status = 0;

if (pid = fork()) {

/* parent */

p|d = wait(&status);
} else {

/* child */

exit(status);

The fork syscall returns twice:
it returns a zero to the child
and the child process ID (pid)
to the parent.

Parent uses wait to sleep until
the child exits; wait returns
child pid and status.

Implementing UNIX fork

Steps to implement UNIX fork

— Create and initialize the process control block (PCB) in the
kernel

— Create a new address space

— Initialize the address space with a copy of the entire
contents of the address space of the parent
* mostly sets up the page table

* some implementations share portions of address space initially
(copy-on-write)

— Inherit parent execution context (e.g., any open files, PC, SP)
— Inform the scheduler that the new process is ready to run

Implementing UNIX exec

e Steps to implement UNIX exec
— Load the program into the current address space
— Copy arguments into memory in the address space

— Initialize the hardware context to start execution at
“start'’ (reset PC)

Questions

 Can UNIX fork() return an error? Why?
 Can UNIX exec() return an error? Why?

* Can UNIX wait() ever return immediately?
Why?

Starting a New Process

* Allocate PCB; in Unix this is already done by fork

* Allocate memory (as needed, on demand)
— “Copy” program from disk into memory
— Allocate user stack
— Allocate heap

* Allocate kernel stack (sys calls, interrupts,
exceptions)

Starting a New Process (cont’d)

* Transfer to user mode

 If Exec path (vs. fork)
— Copy arguments into user memory (e.g. argc, argv)
— Jump to start address

start (argl, arg?) {

main (argl, arg?);

exit (); Why not just call main?

Back to Protection

Thought Experiment

* How can we implement execution with limited
privilege (no hardware support)?

* How do we go faster?

Hardware Support:
Dual-Mode Operation

Kernel mode
— Execution with the full privileges of the hardware

— Read/write to any memory, access any |/O device,
read/write any disk sector, send/read any packet

User mode

— Limited privileges

— Only those granted by the operating system kernel
On the x86, mode stored in EFLAGS register

On the MIPS, mode in the status register

A CPU with Dual-Mode Operation

Branch Address

..

oo

500-9 00-009 -\5 CPU ----- ;
: New PC .
T SR S Select PC PrOgram Instructions
L . T D>
Handler PC e > Counter Fetch and
;~>| Execute
/
--)\ ansanst
New Mode :
Select Mod i
visssasssasnissirssiserinsirnsssd | NoOde — [rreecereiseriess -
Mode ode
/
opcode

Where do interrupts fit in?

The Kernel Abstraction

Chapter 2 OSPP
Part Il

Hardware Support:
Dual-Mode Operation

Privileged instructions
— Available to kernel
— Not available to user code

Limits on memory accesses
— To prevent user code from overwriting the kernel

Timer
— To regain control from a user program in a loop

Safe way to switch from user mode to kernel
mode, and vice versa

Privileged instructions

 Examples?

* What should happen if a user program
attempts to execute a privileged instruction?

Question

* For a “Hello world” program, the kernel must
copy the string from the user program
memory into the screen memory.

 Why not allow the application to write directly
to the screen’s buffer memory?

Simple Memory Protection

Implementation Physical
Memory
Base
_ . _ Base
Virtual : Physical

Address & Address

Prﬂcessﬂr ,}@ .. .}_

Base+
Bound

,,,,,,,,,,,,,,,,,,,,, o Raise

Exception

Towards Virtual Addresses

 Problems with base and bound?

Virtual Addresses

* Translation
done in
hardware,
using a table

Virtual Address space Physical memory

* Table set up by
operating
system kernel

Example

int staticvar = 0; // a static variable
malin () {

int local var;

staticVar += 1;

sleep(10); // sleep for x seconds

printf ("static address: %p, local: Sp\n",
&staticVar, &localVar);

)

What happens if we run two instances of this
program at the same time: staticVar,
localVvar?

Back to Interrupts: Hardware Timer

 Hardware device that periodically interrupts
the processor
— Returns control to the kernel handler
— Interrupt frequency set by the kernel
* Not by user code!

— Interrupts can be temporarily deferred
* Not by user code!

* Interrupt deferral crucial for implementing mutual
exclusion

— Important for protection as well as scheduling

Mode Switch

* From user mode to kernel mode

— Interrupts
* Triggered by timer and 1/O devices

— Exceptions
* Triggered by unexpected program behavior
* Or malicious behavior!

— System calls (aka protected procedure call)

* Request by program for kernel to do some operation on
its behalf

* Only limited # of very carefully coded entry points

Simple Examples

* Examples of exceptions

— Memory error
— Divide by O

 Examples of system calls

— read/write

Mode Switch

* From kernel mode to user mode

— New process/new thread start
* Jump to first instruction in program/thread

— Return from interrupt, exception, system call

* Resume suspended execution

— Process/thread context switch

e Resume some other process

— User-level upcall (UNIX signal)

* Asynchronous notification to user program

How do we handle interrupts safely?

* |nterrupt vector
— Limited number of entry points into kernel

e Atomic transfer of control

— Single instruction to change (all changed together)
* Program counter
 Stack pointer
* Kernel/user mode
* Memory protection

* Transparent re-startable execution
— User program does not know interrupt occurred

Interrupt Vector

* Table set up by OS kernel; pointers to code to
run on different events

Processor Interrupt
Register Vector Table
.................................
e e » hand|eTimer|nterrupt() {
Which one?

IRQ determines offset

}

ooooooooo

----------------------- » handleDivideByZero() {

}

ooooooooo

----------------------- » handleSystemCall() {

}

Interrupt Stack

e Per-processor, located in kernel (not user)
memory
— Usually a process/thread has both: kernel and
user stack
* Why can’t the interrupt handler run on the
stack of the interrupted user process?

— user stack may be corrupted or modified

Interrupt Stack

Running Ready to Run Waiting for I/0
—
Syscall
o -
User Stack Proc2 Proc2 Proc2
Proci Proct Proct
Main Main Main
—-—
I/O Driver
Top Half
Kernel Stack Syscall
Handler
-_—
User CPU User CPU
State State
—
User mode Preempted Blocked

(timer int) (syscall “int”)

Interrupt Masking

* |nterrupt handler runs with interrupts off
— Why do we need to mask/buffer interrupts in the handler?
— Re-enabled when interrupt completes

* OS kernel can also turn interrupts off

— Eg., when determining the next process/thread to run

— On x86

* CLI: disable interrupts
e STI: enable interrupts
* Only applies to the current CPU core

 We'll need this to implement synchronization in chapter 5

Case Study: x86 Interrupt

Save current stack pointer
Save current program counter

Save current processor status word (condition
codes: conditional results, arithmetic carry, ...)

Switch to kernel stack; put SP, PC, PSW on stack
Switch to kernel mode
Vector through interrupt table

Interrupt handler saves registers it might use
— pushad: save ‘em all

Before Interrupt

User-level Process

e e I I (R e
while(...) { i
X = x+1:

Registers

SS: ESP

CS: EIP

EFLAGS

Other Registers:
EAX, EBX,

+«— PSW

Kernel

handler() {
pushad

Interrupt
Stack

Jumped to Interrupt Handler

User-level Process Registers Kernel
foc:w%é(_‘__) : SS:ESP o)hanpdul:;(a)d{
X = x+1; : _ ;
v = y-2 : CS: EIP e ; }
} } EFLAGS
. Interrupt
User Stack other registers: Stack
: EAX, EBX, :
: : info about
Coovrrernnrnnnnnns : g e > / |nterrupt. pf
o Error
.. e EP
e CS
EFLAGS
_ | Esp
.. s

Executing the handler

User-level Process Registers Kernel
AT T I L A,
B g
y = y-2: CS: EIP .- \
}) EFLAGS :
: Interrupt
Stack other registers: Stack
: EAX, EBX, :
: U N All
Corssnranesnnsanas : EBX Registers
- EAX
ESP
SS
Error
LT EP
o cs
EFLAGS
s ESP
__ e

At end of handler

 Handler restores saved registers

e Atomically returns to interrupted
process/thread (hopefully)

— Restore program counter

— Restore program stack

— Restore processor status word
— Switch to user mode

Upcall: User-level event delivery

* Notify user process of some event that needs
to be handled right away

— Time expiration
* Real-time alarm
* Time-slice for user-level thread manager

— Interrupt delivery for VM player
— Asynchronous I/O completion (async/await)

* AKA UNIX signal

Upcalls vs Interrupts

Signal handlers ~ interrupt vector
Signal stack ~ interrupt stack

Automatic save/restore registers = transparent
resume

Signal masking: signals disabled while in signal
handler

But it runs in user-land

Upcall: Before

signal_handler() {
X = y + Z:I (.."‘.."‘...E

Program Counter }

: Signal
g Stack Point
Stack ack Tolmet Stack

Upcall: During

.. g2 signal_handler() {
X =y + Z; €eeenienn, :

Program Counter -+ }

s : Signal

Stack Pointer -~ 9
Stack Stack

Trrresrrnesarresd
Saved
Registers
Eorrorrvssssssrethossssnssssstinns .
: e e et eaeetea e et e e et eneeata ettt SP
s bes bbbt b basd et b s b A be S AR essRe bt b eSS sbes b PC

Making system calls secure

User Program

main () {
file_open(arg1, arg2);
}
(M;

e.g. ~ libc code +—— User Stub

file_open(arg1, arg2) {
push #SYSCALL_OPEN
trap
return

(2)

Hardware Trap

Trap Return

(9)

Kernel

file_open(arg1, arg2) {
/I do operation

Kernel Stub

- file_open_handler() {

I/ copy arguments

/[from user memory

/I check arguments
file_open(arg1, arg2);
I/ copy return value

/I into user memory
return;

Kernel System Call Handler

Locate arguments
— In registers or on user stack
— Translate user addresses (VA) into kernel addresses (PA)

Copy arguments

— From user memory into kernel memory

— Protect kernel from malicious code evading checks

— Time-of-check vs. Time-of-use (TOCTOU) attack avoided

Validate arguments
— Protect kernel from errors in user code

Copy results back into user memory
— Translate kernel addresses into user addresses

enius of OS software stack

Compilers Web Servers Source Code Control
Databases Word Processing
Web Browsers Email
Portable
0S Library
System Call
Interface

Portable Operating
System Kernel

x86 ARM PowerPC

10Mbps/100Mbps/1Gbps Ethernet

802.11 a/b/g/n Scsl IDE

Graphics Accelerators LCD Screens

One Implication of this

Get to choose where to put functionality
User-level process

— Unix: user-level shell, login

User-level library

— Unix: lib.c (1/0, fork/exec, ...)

OS kernel

— File system, network stack, etc

Next Week

* Threads
 Read Chap. 4 OSPP

