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Part I



Announcements

• Today: kernel

– Asynchrony

– Processes

– Protection



Kernel

• The software component that controls the hardware 
directly and implements the core privileged OS functions.

• Modern hardware has features that allow the OS kernel to 
protect itself from untrusted user code.



Kernel Protection

• Reliability

– crashes

• Security

– Write to arbitrary disk (or memory) locations

• Privacy

– User files



Does kernel/OS teach any lessons I can use?

• Yes!

• Protection
– Trend is for apps to be mini-OS?

– Browser

• Resource management
– Trend is to give apps X resources and let them 

figure out how to share

– User threads, virtual machines

• Asynchrony and many others



A Short Digression: Starting the Kernel: 
Booting

Virus check

Virus check

non-vol ROM



Challenge: Asynchrony: Device 
Interrupts

• OS kernel needs to communicate with physical 
devices

• Devices operate asynchronously from the CPU

– Polling: Kernel waits until I/O is done

– Interrupts: Kernel can do other work in the meantime

• Device access to memory

– Programmed I/O: CPU reads and writes to device

– Direct memory access (DMA) by device



Device Interrupts

• How do device interrupts work?

– Where does the CPU run after an interrupt?

– What is the interrupt handler written in?  C? Java?

– What stack does it use?

– Is the work the CPU had been doing before the 
interrupt lost forever?  

– If not, how does the CPU know how to resume 
that work?

– Will come back to this soon



How it all happens

CPU checks for interrupts after each instruction cycle
oops, looks like we are “polling” after all but in h/w ☺

2. sends IRQ #
(interrupt request)

3. INT Vector k

1. user hits a key

programmable interrupt controller (x86)



Device Driver and I/O Interrupts

• Top half of driver called from syscall handler

– issues privileged instructions: read from disk, done

• Bottom half

– called when interrupt arrives

– interrupt handling: I/O completion or error recovery



Interrupt Handler

• Bottom half

– runs first called directly by hardware, saves state 
of hardware, then enables top half to run

• Top half ~ interrupt handler specifics

– for an I/O event: calls driver bottom half: e.g. data 
copying 



Buggy Device Drivers

• Validate/inspect

• User-level drivers

• Running drivers in VM

• Sandboxing

– mini-execution environment in the kernel



Challenge: Protection

• How do we execute code with restricted 
privileges?
– Either because the code is buggy or if it might be 

malicious

• Some examples:
– A script running in a web browser

– A program you just downloaded off the Internet

– A program you just wrote that you haven’t tested yet

– First see how OS does it



A Problem: both constrain and protect 
process



Main Points

• Process concept
– A process is the OS abstraction for executing a 

program with limited privileges but that is isolated

• Dual-mode operation: user vs. kernel
– Kernel-mode: execute with complete privileges

– User-mode: execute with fewer privileges

– Processor is a warden (OS) and an inmate (process)!

• Safe control transfer
– How do we switch from one mode to the other?



Process Abstraction

• Process: an instance of a program, running with 
limited rights

– Thread: a sequence of instructions within a process

• Potentially many threads per process (for now 1:1)

– Address space: set of rights of a process

• Memory that the process can access

– Other permissions the process has (e.g., which 
system calls it can make, what files it can access)



The Birth of a Program

int j;
const char* s = “hello\n”;

int p() {
j = write(1, s, 6);

return(j);
} 

myprogram.c

compiler

…..
p:

store this
store that
push
jsr _write
ret
etc.

myprogram.s

assembler data

myprogram.o

linker

object 
file

data program

(executable file)
myprogram

datadatadata

libraries 
and other 

objects

stub



Birth of a Process: Process State

Stored in PCB (Process Control Block)

Information associated with each process

• Program counter, stack pointer

• CPU registers

• CPU scheduling information

• Memory-management information

• Accounting information

• I/O status information

• Open files, signals (if  UNIX)



Process API

• Very briefly



UNIX Process Management

• UNIX fork – system call to create a copy of the 
current process, and start it running
– No arguments!

• UNIX exec – system call to change the program 
being run by the current process

• UNIX wait – system call to wait for a process to 
finish

• UNIX signal – system call to send a notification to 
another process

• UNIX/LINUX clone – similar to fork but used with 
threads



Unix Fork/Exec/Exit/Wait
Example

fork parent fork child

wait exit

int pid = fork();
Create a new process that is a clone of 
its parent.

exec*(“program” [, argvp, envp]);
Overlay the calling process virtual 
memory with a new program, and 
transfer control to it.

exit(status);
Exit with status, destroying the process. 

int pid = wait*(&status);
Wait for exit (or other status change) of 
a child.  

exec

initialize child 
context

Corner cases: orphans and zombies



Example: Process Creation in Unix

int pid;
int status = 0;

if (pid = fork()) {
/* parent */
…..
pid = wait(&status);

} else {
/* child */
…..
exit(status);

}

Parent uses wait to sleep until 
the child exits; wait returns 
child pid and status.

The fork syscall returns twice: 
it returns a zero to the child 
and the child process ID (pid) 
to the parent.



Implementing UNIX fork

Steps to implement UNIX fork
– Create and initialize the process control block (PCB) in the 

kernel

– Create a new address space

– Initialize the address space with a copy of the entire 
contents of the address space of the parent
• mostly sets up the page table

• some implementations share portions of address space initially 
(copy-on-write)

– Inherit parent execution context (e.g., any open files, PC, SP)

– Inform the scheduler that the new process is ready to run



Implementing UNIX exec

• Steps to implement UNIX exec

– Load the program into the current address space

– Copy arguments into memory in the address space

– Initialize the hardware context to start execution at 
``start'‘ (reset PC)



Questions

• Can UNIX fork() return an error?  Why?

• Can UNIX exec() return an error?  Why?

• Can UNIX wait() ever return immediately?  
Why?



Starting a New Process

• Allocate PCB; in Unix this is already done by fork

• Allocate memory (as needed, on demand)

– “Copy” program from disk into memory

– Allocate user stack 

– Allocate heap

• Allocate kernel stack (sys calls, interrupts, 
exceptions)



Starting a New Process (cont’d)

• Transfer to user mode

• If Exec path (vs. fork)
– Copy arguments into user memory (e.g. argc, argv)

– Jump to start address

start (arg1, arg2) {

main (arg1, arg2);

exit ();

}

Why not just call main?



Back to Protection



Thought Experiment

• How can we implement execution with limited 
privilege (no hardware support)?

• How do we go faster?



Hardware Support: 
Dual-Mode Operation

• Kernel mode
– Execution with the full privileges of the hardware

– Read/write to any memory, access any I/O device, 
read/write any disk sector, send/read any packet

• User mode
– Limited privileges

– Only those granted by the operating system kernel

• On the x86, mode stored in EFLAGS register

• On the MIPS, mode in the status register



A CPU with Dual-Mode Operation

Where do interrupts fit in?



The Kernel Abstraction

Chapter 2 OSPP

Part II



Hardware Support:
Dual-Mode Operation

• Privileged instructions
– Available to kernel

– Not available to user code

• Limits on memory accesses
– To prevent user code from overwriting the kernel

• Timer
– To regain control from a user program in a loop

• Safe way to switch from user mode to kernel 
mode, and vice versa



Privileged instructions

• Examples?

• What should happen if a user program 
attempts to execute a privileged instruction?



Question

• For a “Hello world” program, the kernel must 
copy the string from the user program 
memory into the screen memory. 

• Why not allow the application to write directly 
to the screen’s buffer memory? 



Simple Memory Protection



Towards Virtual Addresses

• Problems with base and bound?



Virtual Addresses

• Translation 
done in 
hardware, 
using a table

• Table set up by 
operating 
system kernel

code

data

heap

stack

data

Virtual Address space Physical memory



Example

int staticVar = 0;      // a static variable

main() {

int local_var;

staticVar += 1;

sleep(10);  // sleep for x seconds

printf ("static address: %p, local: %p\n", 

&staticVar, &localVar);

}

What happens if we run two instances of this 
program at the same time: staticVar, 
localVar?



Back to Interrupts: Hardware Timer

• Hardware device that periodically interrupts 
the processor
– Returns control to the kernel handler

– Interrupt frequency set by the kernel
• Not by user code!

– Interrupts can be temporarily deferred 
• Not by user code!

• Interrupt deferral crucial for implementing mutual 
exclusion

– Important for protection as well as scheduling



Mode Switch

• From user mode to kernel mode
– Interrupts

• Triggered by timer and I/O devices

– Exceptions
• Triggered by unexpected program behavior

• Or malicious behavior!

– System calls (aka protected procedure call)
• Request by program for kernel to do some operation on 

its behalf

• Only limited # of very carefully coded entry points



Simple Examples

• Examples of exceptions

– Memory error

– Divide by 0

• Examples of system calls
– read/write



Mode Switch

• From kernel mode to user mode

– New process/new thread start

• Jump to first instruction in program/thread

– Return from interrupt, exception, system call

• Resume suspended execution

– Process/thread context switch

• Resume some other process

– User-level upcall (UNIX signal)

• Asynchronous notification to user program



How do we handle interrupts safely?

• Interrupt vector
– Limited number of entry points into kernel

• Atomic transfer of control
– Single instruction to change (all changed together) 

• Program counter

• Stack pointer

• Kernel/user mode

• Memory protection

• Transparent re-startable execution
– User program does not know interrupt occurred



Interrupt Vector

• Table set up by OS kernel; pointers to code to 
run on different events

IRQ determines offset

Which one?



Interrupt Stack

• Per-processor, located in kernel (not user) 
memory

– Usually a process/thread has both: kernel and 
user stack

• Why can’t the interrupt handler run on the 
stack of the interrupted user process?

– user stack may be corrupted or modified



Interrupt Stack

User mode Preempted Blocked
(timer int) (syscall “int”)



Interrupt Masking

• Interrupt handler runs with interrupts off
– Why do we need to mask/buffer interrupts in the handler?

– Re-enabled when interrupt completes

• OS kernel can also turn interrupts off
– Eg., when determining the next process/thread to run

– On x86
• CLI: disable interrupts

• STI: enable interrupts

• Only applies to the current CPU core

• We’ll need this to implement synchronization in chapter 5



Case Study: x86 Interrupt

• Save current stack pointer

• Save current program counter

• Save current processor status word (condition 
codes: conditional results, arithmetic carry, …)

• Switch to kernel stack; put SP, PC, PSW on stack

• Switch to kernel mode

• Vector through interrupt table

• Interrupt handler saves registers it might use
– pushad: save ‘em all



Before Interrupt

PSW



Jumped to Interrupt Handler

info about 
interrupt: pf



Executing the handler



At end of handler

• Handler restores saved registers

• Atomically returns to interrupted 
process/thread (hopefully)

– Restore program counter

– Restore program stack

– Restore processor status word

– Switch to user mode



Upcall: User-level event delivery

• Notify user process of some event that needs 
to be handled right away

– Time expiration 

• Real-time alarm

• Time-slice for user-level thread manager

– Interrupt delivery for VM player

– Asynchronous I/O completion (async/await)

• AKA UNIX signal



Upcalls vs Interrupts

• Signal handlers ~ interrupt vector

• Signal stack ~ interrupt stack

• Automatic save/restore registers = transparent 
resume

• Signal masking: signals disabled while in signal 
handler

• But it runs in user-land



Upcall: Before



Upcall: During



Making system calls secure

e.g. ~ libc code



Kernel System Call Handler

• Locate arguments
– In registers or on user stack
– Translate user addresses (VA) into kernel addresses (PA)

• Copy arguments
– From user memory into kernel memory
– Protect kernel from malicious code evading checks
– Time-of-check vs. Time-of-use (TOCTOU) attack avoided

• Validate arguments
– Protect kernel from errors in user code

• Copy results back into user memory 
– Translate kernel addresses into user addresses



Genius of OS software stack



One Implication of this

• Get to choose where to put functionality

• User-level process

– Unix: user-level shell, login

• User-level library

– Unix: lib.c (I/O, fork/exec, …)

• OS kernel

– File system, network stack, etc



Next Week

• Threads

• Read Chap. 4 OSPP


