
CSci 5103
Operating Systems

Jon Weissman

The Landscape at 50K feet
OSPP ~ Chap. 2; Review

A First Look at Some Key Concepts: #1
• kernel

• The software component that controls the
hardware directly, and implements the core
privileged OS functions.

• Modern hardware has features that allow the OS
kernel to protect itself from untrusted user code.

• User code can invoke the kernel only at well-
defined entry points – what are those?

Kernel

• Different OS organizations

• Microkernel
– Small kernel, rest of OS possibly in user-space

– Mostly research systems: Mach, Amoeba, Minix

– Some mobile OS: symbian, blackberry

• Monolithic
– Everything is in OS domain

– Linux, Windows

– Many try to isolate a “kernel” to be the machine-
dependent interface code

Key Concept #2
• thread

• An executing stream of instructions and its
CPU register context.

• Hardware may directly support threads –
hyper-threading (each core has two separate
architectural contexts), x86 has this mode

• Generally, hardware is unaware of threads,
and the OS/user libraries must provide it

More on threads

• A thread is schedulable
• it runs on a CPU core

• defined by CPU register values (PC, SP)

• suspend: save register values in memory

• resume: restore registers from memory

• Multiple threads can execute independently
• They can run in parallel on multiple CPUs...

– physical concurrency

• …or arbitrarily interleaved on a single CPU
– logical concurrency

• Each thread must have its own stack

Key Concepts #3 and #4

• virtual address space

• An execution context for threads/processes
that provides an independent name space for
addressing code and data

• process

• An execution of a program, consisting of a
virtual address space, one or more threads,
other resources, some OS kernel state. Unit of
isolation!

Memory and the CPU
0

OS data

OS code

Program A

dataData

Program B

Data

registers

CPU

R0

Rn

PC

main memory

x

What is different between red and blue?

The Kernel

– The kernel code is “shared” by all user programs, but the
kernel is protected:

• User code cannot access internal kernel data structures directly

• Think: object-oriented methods

– Cannot access private variables and methods, only public ones

• Hardware maintains mode bits to track whether kernel or user code
is executing

A Protected Kernel
0

2n

OS data

OS code

Program A

dataData

Program B

Data

registers

CPU

R0

Rn

PC

main memory

x

mode

Mode register bit
indicates whether

the CPU is running a
user program or in

the protected kernel

Some instructions or
data accesses are

only legal when the
CPU is executing in

kernel mode

y

X
?

Y

What about program A -> Program B or B’s data?

Turning to Hardware (Briefly)

• How does the OS interact with the external
devices?
– I/O Structure

– Storage Structure

– Each device controller is in charge of a particular device type

– OS has special code to communicate with controllers

– ?

Device Drivers

• Device drivers … (i.e. glue)
– Most of the OS code is device drivers

– High-level and low-level code
• Assembly or mix of assembly and C generally

– Contains special I/O instructions (assembly part)

• Today, dynamically load device drivers into the OS
– Why is this critical?

– What is the problem with device drivers?

I/O

• User code cannot issue I/O instructions directly

– Why?

• System call – the method used by a program to
request action by the operating system

• Usually takes the form of a trap to a specific
location in the kernel code

I/O Operation

• I/O devices and the CPU can execute concurrently

• CPU moves data from/to RAM to the device

– Concurrency: With DMA, CPU just initiates, DMA
controller can transfer between RAM <-> device

• How does device controller inform CPU that it has
finished?

Interrupts: Key Ideas

• Interrupts transfer control to an interrupt service
routine in the kernel

• A trap is a software-generated “interrupt” caused
either by an error or a user request

• Q: What is meant by a user request?

• An operating system is interrupt driven.

– Why? What is the alternative (suppose devices didn’t
raise interrupts)?

I/O Structure
• I/O types

– Asynchronous

• After I/O starts, control returns to kernel without waiting for
I/O completion

• Get an interrupt or notification when finished

– Synchronous

• CPU idles until I/O is ready (one I/O at a time)

– API: synchronous I/O (built on asynchronous kernel I/O)

– API: asynchronous I/O (ditto)

Storage-Device Hierarchy

Why this line?

bigger, slower
.
.
.

Storage Issues

• Latency

– Crossing the bus

– Controller logic

– Mechanical operations (HDD): very high

• Throughput

– Sustained performance

Storage
• Memory is a large array of bytes, each with its own

address. It is contains rapidly accessible data shared
by the CPU and I/O devices.

• Main memory is a volatile storage device. It loses its
contents in the case of system failure, power-down.
Though this may be changing … NVM

• Since main memory (primary storage) is volatile and
too small to accommodate all data and programs
permanently, the computer system must provide
secondary storage to “back up” main memory.

Common OS System Components –
50K feet

• Process Management

• Main Memory Management

• Secondary-Storage Management

• I/O System Management

• File Management

Process Management

• A process is a program in execution. A process
needs certain resources, including:
– CPU, memory, files, access to I/O devices, to

accomplish its task.

• The operating system is responsible for the
following activities in connection with process
management.
– Process creation and deletion
– Process suspension and resumption
– Process communication and synchronization
– Process scheduling
– Bookkeeping: accounting

Main-Memory Management

• The operating system is responsible for the
following activities in connections with
memory management:
– Keep track of which parts of memory are currently being

used and by whom

– Keep track of free memory

– Allocate and deallocate memory space as needed

Secondary-Storage Management

• The operating system is responsible for the
following activities in connection with disk
management:

I/O and File System Management

• The I/O system consists of:
– Device-drivers

– A buffer-caching system

• A file is a collection of related information defined by its
creator. Commonly, files represent programs and data.

• The operating system is responsible for the following
activities in connections with file management:
– File/Directory creation, deletion, access, protection

Next Week

• The Kernel

• Read Chap. 2 OSPP, 3 OSPP (skim – refresh)

• HW #1 out on Thursday

Have a great weekend!

