Linux Device Drivers

NED T O KT U AL 1.!:*:‘:‘:
.I'T N
LINUX

DEVICE DRIVERS

L) 1. J
- J

Modules

A piece of code that can be added to the kernel
at runtime is called a “module”

A device driver is one kind of module

Each module is made up of object code that can
be dynamically linked to the running kernel

— Dynamic linking done using insmod program

— Unlinking done using rmmod program

Keep kernel small

Character Devices

* Char device drivers
— stream of bytes (sequential access)
— open, close, read, write
— E.g. console, serial ports

 Block device drivers
— buffering

Character Device Drivers

* Char devices are accessed through nodes of the
filesystem tree located in the /dev directory

* Special files for char drivers are identified by “c”
in the first character of the Is -l listing in /dev

* crw--w---- 1roottty 4, .. tty40

Example Character Device

e Scull:
— Simple Character Utility for Loading Localities (scull)
— A memory based device
— Does not connect to any real device

Character Device Driver: Scull

System Calls

| Kernel
Read Write

Scull devices are persistent; can be shared

Device Numbers

* Major number
— |ldentifies the driver associated with the device
— Available in: /proc/devices

e Minor number

— Used by the Kernel to determine exactly which device
is being referred to

* |dea: many devices can share the same driver
— e.g. many terminals might share the same driver

Device Numbers

* dev t type
— Used to hold device numbers
— Major and minor parts
— 32 bit (12 bits for major number, 20 bits for minor number)

* Macros

— To obtain the major or minor partsofadev t
* MAJOR (dev_t dev);
* MINOR (dev_t dev);
— To convert major and minor numbers into dev t

* MKDEV (1nt major, 1int minor);

Device Major Number: Static Allocation

int register_chrdev_region (dev _t first, unsigned int count,
char *name)

— first: beginning device number of the range you would
like to allocate

— count: total device numbers (minor) you are requesting
(will be 1 for us)

— name: name of the device that should be associated
with this range

Device Major Number: Dynamic
Allocation **

int alloc_chrdev_region (dev_t *dev, unsigned int firstminor,
unsigned int count, char *name)

— dev: output parameter; on successful completion,
holds the first number in your allocated range

— firstminor: requested first minor number to use;
usually O

— count: total number of contiguous device
numbers (minor) you are requesting

— name: name of the device that should be
associated with this number range

Example of Device Number Allocation

extern int scull_major; // auto allocation => 0
extern int scull_minor; // assume this is 0

if (scull_major) {

dev = MKDEV(scull _major, scull_minor);

result = register_chrdev_region (dev, scull_nr_devs, “scull”);
}
else {

result = alloc_chrdev_region (&dev, scull_minor,
scull_nr_devs, “scull”);

scull_major = MAJOR(dev);
}

Device Driver Life-cycle

e Stage 1: Registration and Initialization

— module_init (called when insmod is invoked)

e Stage 2: Serving requests from user-space
programs

— open, read, write, close, |seek

e Stage 3: De-registration and clean-up

— module_exit (called when rmmod is invoked)

Hello World

http://www.makelinux.net/ldd3/chp-2-sect-2

#include <linux/init.h>
#include <linux/module.h>
static char *charArg = "foo";
static int intArg = 25;

/* declare that intArg and charArg are args to the module and list their types and permissions */
module_param (intArg, int, S_IRUGO);
module_param (charArg, charp, S_IRUGO);

/* module initialize function */
static int hello_init(void)
{
printk (KERN_INFO "HelloWorld: You passed: %d and %s\n", intArg, charArg);
}

/* module remove function */
static void hello_exit(void)

{
printk (KERN_INFO "HelloWorld: So long and thanks for all the fish..\n");

}

/* specify the module init and remove functions */
module_init(hello_init);
module_exit(hello_exit);

root# insmod ./hello.ko HelloWorld: You passed 25 and foo
root# rmmod hello HelloWorld: So long and thanks for all the fish..

Important Data Structures

struct file

— This structure is created every time a file/dev is opened. It is maintained
while the file is open

struct inode

— An inode is maintained for each file/dev; contains pointers to the device
structure (cdev)

struct cdev

— the char device; contains a pointer to the file operations structure
struct file_operations
— contains pointers to functions for device interface functions

struct your_device

— contains state, storage, ... and cdev

struct file operations

struct file_operations scull_fops = {
Alseek = scull_llseek,
.read = scull_read,<
.write = scull_write,
.octl = scull_ioctl,
.open = scull_open,
.release = scull_release,

}

User code:
fd = open (“/dev/scull0”, ...);
read (fd, ...);

struct file

 Some important fields: open file
— struct file_operations *fops
* The operations associated with the file
— void *private data (~ device-specific data)
» Useful resource for preserving state information across system calls

struct file_operations

struct file: filp

struct your_device

Scull Device

struct scull_dev { // up to you (i.e.. struct your_device)
... data, bookkeeping, buffers, ...
struct semaphore sem;
struct cdev cdev;

* struct cdev is Kernel’s internal structure that represents char
devices

 The scull device driver needs to initialize this structure, initialize
the cdev structure and register cdev with the Kernel

struct inode

e Passed to open function

e Some important fields
— dev_ti_rdev
* For inodes of device files, this field contains the actual device number

— struct cdev *i_cdev

 struct cdev is Kernel’s internal structure that represents char devices

— container_of: from i_cdev => *struct your_device

Char Device Registration

e Kernel uses structures of type struct cdev to
represent char devices internally

* Before Kernel can invoke device’s operations,
we must do the following

— 1. Set the file_operations pointer inside this
structure

— 2. Allocate and register one or more such
structures

Char Device Registration

void cdev_init (struct cdev *cdev, struct file_operations *fops)

/

int cdev_add (struct cdev *dev, dev_t num,
unsigned int count);

count: #of device numbers (usually, this is 1)

. . e)
Device is now “live

Status after Char Device Registration

User
| Space
File System
struct
v inode]
Kernel
Space

cdev_add

Scull Device Driver

Handling of open call

User
| Space
R open 1 File System
struct
! inode I
Kernel
Space

X
scull_open (struct inode \ *inode, struct file *filp)

Conceptual View

Process A

scullO sculll

after registration inode inode

S
inode file

file_operations

Open and release

e open (*inode, *filp)
— setup filp->private_data for subsequent methods

— device-specific initialization

* release (*inode, *filp) // close
— device-specific dealloc / release resources

Read and write

read (*filp, *buff, count, *offp)
write (*filp, *buff, count, *offp)

returns: <0 on error; >= 0 is bytes transferred
buff — user space pointer

copy_to user (toAddr, fromAddr)
copy_from_user (toAddr, fromAddr)

Closer look at read ...

ssize_t dev read(struct file *file, char *buf, size

/

struct file
Buffer
f_flags
f mode
f_pos

Kernel Space

_t count,

copy_to_user()

Buffer
{in the

application
orlibc)

User Space

Allocating memory in the kernel

* kmalloc (size, GFP_KERNEL)

— similar to malloc

— memory is not cleared

* kfree (memPtr)

 allocate buffers within your device

Synchronization

* Block processes calling your device

 Semaphores
— sema_init (*sem, val)
— down (*sem), down_interruptible, down_trylock
— up (*sem)

* WaitQueues
— init_waitqueue head()
— wait_event(), wait_event_interruptible() ...
— wake up(), wake up_interruptible()

