
Linux Device Drivers

Modules

• A piece of code that can be added to the kernel
at runtime is called a “module”

• A device driver is one kind of module

• Each module is made up of object code that can
be dynamically linked to the running kernel

– Dynamic linking done using insmod program

– Unlinking done using rmmod program

• Keep kernel small

Character Devices

• Char device drivers

– stream of bytes (sequential access)

– open, close, read, write

– E.g. console, serial ports

• Block device drivers

– buffering

Character Device Drivers

• Char devices are accessed through nodes of the
filesystem tree located in the /dev directory

• Special files for char drivers are identified by “c”
in the first character of the ls -l listing in /dev

• crw--w---- 1 root tty 4, … tty40

Example Character Device

• Scull:
– Simple Character Utility for Loading Localities (scull)

– A memory based device

– Does not connect to any real device

Character Device Driver: Scull

User-level Programs

Scull Device Driver

Device: Memory Area

Kernel

User

System Calls

Read Write

Scull devices are persistent; can be shared

Device Numbers

• Major number
– Identifies the driver associated with the device

– Available in: /proc/devices

• Minor number
– Used by the Kernel to determine exactly which device

is being referred to

• Idea: many devices can share the same driver
– e.g. many terminals might share the same driver

Device Numbers

• dev_t type

– Used to hold device numbers

– Major and minor parts

– 32 bit (12 bits for major number, 20 bits for minor number)

• Macros
– To obtain the major or minor parts of a dev_t

• MAJOR(dev_t dev);

• MINOR(dev_t dev);

– To convert major and minor numbers into dev_t
• MKDEV(int major, int minor);

Device Major Number: Static Allocation

int register_chrdev_region (dev_t first, unsigned int count,

char *name)

– first: beginning device number of the range you would
like to allocate

– count: total device numbers (minor) you are requesting
(will be 1 for us)

– name: name of the device that should be associated
with this range

Device Major Number: Dynamic
Allocation **

int alloc_chrdev_region (dev_t *dev, unsigned int firstminor,
unsigned int count, char *name)

– dev: output parameter; on successful completion,
holds the first number in your allocated range

– firstminor: requested first minor number to use;
usually 0

– count: total number of contiguous device
numbers (minor) you are requesting

– name: name of the device that should be
associated with this number range

Example of Device Number Allocation

extern int scull_major; // auto allocation => 0
extern int scull_minor; // assume this is 0

if (scull_major) {
dev = MKDEV(scull_major, scull_minor);
result = register_chrdev_region (dev, scull_nr_devs, “scull”);

}
else {

result = alloc_chrdev_region (&dev, scull_minor,
scull_nr_devs, “scull”);

scull_major = MAJOR(dev);
}

Device Driver Life-cycle

• Stage 1: Registration and Initialization

– module_init (called when insmod is invoked)

• Stage 2: Serving requests from user-space
programs

– open, read, write, close, lseek

• Stage 3: De-registration and clean-up

– module_exit (called when rmmod is invoked)

Hello World

http://www.makelinux.net/ldd3/chp-2-sect-2

#include <linux/init.h>

#include <linux/module.h>

static char *charArg = "foo";

static int intArg = 25;

/* declare that intArg and charArg are args to the module and list their types and permissions */

module_param (intArg, int, S_IRUGO);

module_param (charArg, charp, S_IRUGO);

/* module initialize function */

static int hello_init(void)

{

printk (KERN_INFO "HelloWorld: You passed: %d and %s\n", intArg, charArg);

}

/* module remove function */

static void hello_exit(void)

{

printk (KERN_INFO "HelloWorld: So long and thanks for all the fish..\n");

}

/* specify the module init and remove functions */

module_init(hello_init);

module_exit(hello_exit);

root# insmod ./hello.ko HelloWorld: You passed 25 and foo

root# rmmod hello HelloWorld: So long and thanks for all the fish..

Important Data Structures

• struct file
– This structure is created every time a file/dev is opened. It is maintained

while the file is open

• struct inode
– An inode is maintained for each file/dev; contains pointers to the device

structure (cdev)

• struct cdev
– the char device; contains a pointer to the file operations structure

• struct file_operations
– contains pointers to functions for device interface functions

• struct your_device
– contains state, storage, … and cdev

struct file_operations

struct file_operations scull_fops = {
.llseek = scull_llseek,
.read = scull_read,
.write = scull_write,
.ioctl = scull_ioctl,
.open = scull_open,
.release = scull_release,

}

User code:
fd = open (“/dev/scull0”, …);
read (fd, …);
…

struct file

• Some important fields: open file
– struct file_operations *fops

• The operations associated with the file

– void *private_data (~ device-specific data)
• Useful resource for preserving state information across system calls

struct file: filp
*f_op

struct file_operations

*private_data

struct your_device

Scull Device
struct scull_dev { // up to you (i.e.. struct your_device)

… data, bookkeeping, buffers, …

struct semaphore sem;

struct cdev cdev;

}

• struct cdev is Kernel’s internal structure that represents char
devices

• The scull device driver needs to initialize this structure, initialize
the cdev structure and register cdev with the Kernel

struct inode

• Passed to open function

• Some important fields

– dev_t i_rdev

• For inodes of device files, this field contains the actual device number

– struct cdev *i_cdev

• struct cdev is Kernel’s internal structure that represents char devices

– container_of: from i_cdev => *struct your_device

Char Device Registration

• Kernel uses structures of type struct cdev to
represent char devices internally

• Before Kernel can invoke device’s operations,
we must do the following

– 1. Set the file_operations pointer inside this
structure

– 2. Allocate and register one or more such
structures

Char Device Registration

void cdev_init (struct cdev *cdev, struct file_operations *fops)

int cdev_add (struct cdev *dev, dev_t num,
unsigned int count);

count: #of device numbers (usually, this is 1)

Device is now “live”

Status after Char Device Registration

Kernel

Space

User

Space

cdev_add

File System

scull_dev
cdev

struct

inode

Scull Device Driver

Handling of open call

Kernel

Space

User

Space

File System

scull_dev
cdev

Scull Device Driver

open

open

scull_open (struct inode *inode, struct file *filp)

struct

inode

Conceptual View

af

Process A

scull module

scull_devices

file_operations

Buffer
Mutex

Semaphores

cdev

Buffer
Mutex

Semaphores

cdev

Buffer
Mutex

Semaphores

cdev

inodeinode inode

scull0 scull1 scull2

file

open

sets
private_data

after registration

Open and release

• open (*inode, *filp)

– setup filp->private_data for subsequent methods

– device-specific initialization

• release (*inode, *filp) // close

– device-specific dealloc / release resources

Read and write

• read (*filp, *buff, count, *offp)

• write (*filp, *buff, count, *offp)

• returns: <0 on error; >= 0 is bytes transferred

• buff – user space pointer

• copy_to_user (toAddr, fromAddr)

• copy_from_user (toAddr, fromAddr)

Closer look at read ...

Allocating memory in the kernel

• kmalloc (size, GFP_KERNEL)

– similar to malloc

– memory is not cleared

• kfree (memPtr)

• allocate buffers within your device

Synchronization

• Block processes calling your device

• Semaphores

– sema_init (*sem, val)

– down (*sem), down_interruptible, down_trylock

– up (*sem)

• WaitQueues

– init_waitqueue_head()

– wait_event(), wait_event_interruptible() ...

– wake_up(), wake_up_interruptible()

