Storage Systems

OSPP Chap 12

Main Points

• File systems

- Useful abstractions on top of physical devices

Storage hardware characteristics
 – Disks and flash memory

File Systems

- Abstraction on top of persistent storage
 - Magnetic disk
 - Flash memory (e.g., USB thumb drive)
- Devices provide
 - Storage that (usually) survives across machine crashes
 - Block level (random) access
 - Large capacity at low cost
 - Relatively slow performance
 - Magnetic disk read takes 10-20M processor instructions

File System as Illusionist: Hide Limitations of Physical Storage

- Persistence of data stored in file system:
 - Even if crash happens during an update
 - Even if disk block becomes corrupted
 - Even if flash memory wears out
- Naming:
 - Named data instead of disk block numbers
 - Directories instead of flat storage
 - Byte addressable data even though devices are block-oriented
- Performance:
 - Cached data
 - Data placement and data structure organization
- Controlled access to shared data

Storage Devices

- Magnetic disks
 - Storage that rarely becomes corrupted
 - Large capacity at low cost
 - Block level random access
 - Slow performance for random access
 - Better performance for streaming access
- Flash memory
 - Storage that rarely becomes corrupted
 - Capacity at higher cost
 - Block level random access
 - Good performance for reads; worse for random writes

Sectors

Sectors contain sophisticated error correcting codes

- Hide corruptions due to neighboring track writes
- Read an entire sector
- Sector sparing
 - Remap bad sectors transparently to spare sectors on the same surface
- Track skewing
 - Sector numbers offset from one track to the next, to allow for disk head movement for sequential ops

Disk Performance

- Disk Latency =
 - Seek Time + Rotation Time + Transfer Time
 - Seek Time: time to move disk arm over track (1-20ms)
 - Fine-grained position adjustment necessary for head to "settle"
 - Rotation Time: time to wait for disk to rotate under disk head
 - Disk rotation: 4 15ms (depending on price of disk)
 - On average, only need to wait half a rotation
 - Transfer Time: time to transfer data onto/off of disk
 - Disk head transfer rate: 50-100MB/s (5-10 usec/sector)
 - Host transfer rate dependent on I/O connector (USB, SATA, ...)

Toshiba Disk (2008)

Size	
Platters/Heads	2/4
Capacity	320 GB
Performance	
Spindle speed	7200 RPM
Average seek time read/write	10.5 ms/ 12.0 ms
Maximum seek time	19 ms
Track-to-track seek time	1 ms
Transfer rate (surface to buffer)	54–128 MB/s
Transfer rate (buffer to host)	375 MB/s
Buffer memory	16 MB
Power	
Typical	16.35 W
ldle	11.68 W

• How long to complete 500 random disk reads, in FIFO order?

How long to complete 500 sequential disk reads?

- FIFO
 - Schedule disk operations in order they arrive
 - Downsides?

- Shortest seek time first
 - Not optimal!
 - Suppose cluster of requests at far end of disk
 - Downsides?

- SCAN: move disk arm in one direction, until all requests satisfied, then reverse direction
- Also called "elevator scheduling"

 CSCAN: move disk arm in one direction, until all requests satisfied, then start again from farthest request

 R-CSCAN: CSCAN but take into account that short track switch is < rotational delay

• How long to complete 500 random disk reads, in any order?

• How long to read all of the bytes off of a disk?

Flash Memory

Flash Memory

- Writes must be to "clean" cells; no update in place
 - Large block erasure required before write
 - Erasure block: 128 512 KB
 - Erasure time: Several milliseconds
- Write/read page (2-4KB)
 50-100 usec

Flash Drive (2011)

Size	
Capacity	300 GB
Page Size	4KB
Performance	
Bandwidth (Sequential Reads)	270 MB/s
Bandwidth (Sequential Writes)	210 MB/s
Read/Write Latency	75 μ s
Random Reads Per Second	38,500
Random Writes Per Second	2,000 (2,400 with 20% space reserve)
Interface	SATA 3 Gb/s
Endurance	
Endurance	 1.1 PB (1.5 PB with 20% space reserve)
Power	
Power Consumption Active/Idle	3.7 W / 0.7 W

- Why are random writes so slow?
 - Random write: 2000/sec
 - Random read: 38500/sec

Flash Translation Layer

- Flash device firmware maps logical page # to a physical location
 - Garbage collect erasure block by copying live pages to new location, then erase
 - More efficient if blocks stored at same time are deleted at same time (e.g., keep blocks of a file together)
 - Wear-levelling: only write each physical page a limited number of times
 - Remap pages that no longer work (sector sparing)
- Transparent to the device user

File System – Flash

- How does Flash device know which blocks are live?
 - Live blocks must be remapped to a new location during erasure

Next Time

- Device drivers in Linux
- Read posted material
- Lab #4 (short) using device drivers