File System Reliability

OSPP Chapter 14

Main Points

Problem posed by machine/disk failures
Transaction concept

Reliability

— Careful sequencing of file system operations
— Copy-on-write

— Journalling

— Log structure (flash storage)

Availability

— RAID

File System Reliability

 What can happen if disk loses power or
machine software crashes?

— Some operations in progress may complete
— Some operations in progress may be lost
— Overwrite of a block may only partially complete

* File system wants durability (as a minimum!)

— Data previously stored can be retrieved (maybe
after some recovery step), regardless of failure

Storage Reliability Problem

Single logical file operation can involve updates to
multiple physical disk blocks

— inode, indirect block, data block, bitmap, ...

— With remapping, single update to physical disk block can
require multiple (even lower level) updates

At a physical level, operations complete one at a time

— Want concurrent operations for performance

How do we guarantee consistency regardless of when
crash occurs?

Transaction Concept

* Transaction is a group of operations (ACID)

— Atomic: operations appear to happen as a group, or
not at all (at logical level)

» At physical level, only single disk/flash write is atomic

— |solation: other transactions do not see results of
earlier transactions until they are committed

— Consistency: sequential memory model (bit vague)
— Durable: operations that complete stay completed

e Future failures do not corrupt previously stored data

Reliability Approach #1.:
Careful Ordering

e Sequence operations in a specific order
— Careful design to allow sequence to be interrupted safely

* Post-crash recovery

— Read data structures to see if there were any operations
in progress

— Clean up/finish as needed

* Approach taken in FAT, FFS (fsck), and many app-
level recovery schemes (e.g., Word)

FAT: Append Data to File

Add data block MET Data Blocks

Add pointer to data

file 9 block 3

nlock

Update file tail to

e 9 block 0

e 9 block 1

noint to new MFT

e 9 block 2

e 12 block 0

entry

Update access time file 12 block 1

at head of file

file 9 block 4

OV~ WN=O0OWUO~-OWnhWwM=0
Al
—|=h|=h|=h

N JE Y S Y I Y QT S Y}

FAT: Append Data to File

Normal operation:
* Add data block

— Crash here: why ok?
— Lost storage block

* Add pointer to data block
— Crash here: why ok?
— Easy to re-create tail

e Update file tail to point to
new MFT entry
— Crash here: why ok?
— Obtain time elsewhere

 Update access time at head
of file

Recovery:
e Scan MFT

e If entryis unlinked, delete
data block

Reset file tail

* |faccess time is incorrect,
update

FAT: Create New File

Normal operation:

Allocate data block

Update MFT entry to
point to data block

Update directory with
file name -> file number

Update modify time for
directory

Recovery:

Scan MFT

If any unlinked files (not
in any directory), delete

Scan directories for
missing update times

FFS: Create a File

Normal operation: Recovery:

* Allocate data block * Scan inode table

* Write data block e |f any unlinked files (not in
e Allocate inode any directory), delete

e \Write inode block * Compare free block bitmap

 Update bitmap of free against mode_trees o
blocks e Scan directories for missing

+ Update directory with file ~ UPdate/access times

name -> file number

» Update modify time for ~ Time proportional to size of disk
directory

FFS: Move a File

Normal operation: Recovery:
e Remove filename from e Scan all directories to
old directory determine set of live files
e Add filename to new e Consider files with valid
directory inodes and not in any
directory

— New file being created?

— File move?

. . . P) . .
Does this work (even if flipped): — File deletion?

Application Level (doc editing)

Normal operation:

* Write name of each open file
to app folder

* Write changes to backup file

 Rename backup file to be file
(atomic operation provided
by file system)

e Delete list in app folder on
clean shutdown

Recovery:

On startup, see if any
files were left open

If so, look for backup file

If so, ask user to
compare versions

Careful Ordering

* Pros
— Works with minimal support in the disk drive
— Works for most multi-step operations
— Fast

* Cons
— Slow recovery
— May not work alone (may need redundant info)

Reliability Approach #2:
Copy on Write File Layout

* To update file system, write a new version of
the file system containing the update

— Never update in place
* Seems expensive! But
— Updates can be batched

— Almost all disk writes can occur in parallel

* Approach taken in network file server
appliances (WAFL, ZFS)

Root Inode Inode File’s Inode Array Indirect Data

Slots Indirect Blocks (in Inode File) Blocks Blocks
> | » |
|]

j
é

Fixed
Location

Anywhere

Root Inode Inode File's Inode Array Indirect Data

Slots Indirect Blocks (in Inode File) Blocks Blocks
» | » |
|| o]
g > | 2]
B |f L] Sl
_ LDT_’DAD;F—»DU .
M pdate Las

Block of File

b4

FFS Update in Place

Update Inode

New Data Block

Update Indirect Block

Update Bitmap

Copy On Write

* Pros
— Correct behavior regardless of failures
— Fast recovery (root block array)
— High throughput (best if updates are batched)

* Cons
— Small changes require many writes
— Garbage collection essential for performance

File System Reliability

OSPP Chapter 14

Reliability options

* Write in place carefully
* Copy-on-write
* Write intention (log, journal) first

Logging File Systems

* Instead of modifying data structures on disk
directly, write changes to a journal/log

— Intention list: set of changes we intend to make
— Log/Journal is append-only
— Log: write data + meta-data
— Journal: write meta-data only
* Once changes are on log, safe to apply changes to
data structures on disk

— Recovery can read log to see what changes were
intended

* Once changes are copied, safe to remove log

Redo Logging

Prepare

— Write all changes (in
transaction) to log

Commit

— Single disk write to make
transaction durable

Redo (write-back)
— Copy changes to disk

Garbage collection
— Reclaim space in log

* Recovery
— Read log

— Redo any operations for
committed transactions

— Garbage collect log

Before Transaction Start

Example: transfer S100 from Tom to Mike

Cache Tom = $200 Mike = $100

Tom = 5200 Mike = 5100

Nonvolatile

Storage oy

After Updates Are Logged

Cache Tom = $100 Mike = $200
Nonvolatile Tom=5200 Mike=$100
Storage | |

Log: Tom = 5100 Mike = 5200

After Commit Logged

Cache Tom = $100 Mike = $200
Nonvolatile Tom=5200 Mike=$100
Storage | |

Log: Tom = 5100 Mike = 5200 COMMIT

After Copy Back

Cache Tom = $100 Mike = $200
Nonvolatile Tom=$100 Mike =$200
Storage | |

Log: Tom = 5100 Mike = 5200 COMMIT

After Garbage Collection

Cache Tom = $100 Mike = 200
Nonvolatile Tom=$100 Mike=$200
Storage

Log:

Redo Logging

Prepare

— Write all changes (in
transaction) to log

Commit

— Single disk write to make
transaction durable

Redo
— Copy changes to disk

Garbage collection
— Reclaim space in log

* Recovery
— Read log

— Redo any operations for
committed transactions

— Garbage collect log

Questions

 What happens if machine crashes?
— Before transaction start

— After transaction start, before operations are
logged

— After operations are logged, before commit
— After commit, before write back
— After write back before garbage collection

 What happens if machine crashes during
recovery?

Performance

* Log written sequentially
— Often kept in flash storage

* Asynchronous write back

— Any order as long as all changes are logged before
commit, and all write backs occur after commit

* Can process multiple transactions
— Transaction ID in each log entry
— Transaction completed iff its commit record is in log

Redo Log Implementation

Volatile Memory
Log—head poit Fending write—backs T E I og—tail point
og—head pointer] uln] u] ; og—tail pointer
Persistent Storage
Log—head pointer | - |7~ Y
Log: v h-r.
Mixed:
- Writeback | WB Complete
Free ' ' Free
! Complete ; Committed
: X Uncommuitted
older il ncwEr
Garbage Collected Eligible for GC In Use Avatlable for

Mew Records

Transaction Isolation

Process A Process B

move file from xtoy grep across x and y
mv x/file y/ grep x/* y/* > log

Two Phase Locking

 Two phase locking: release locks only AFTER
transaction commit

— Prevents a process from seeing results of another
transaction that might not commit

Transaction Isolation

Process A

Lock x, vy

move file from xtoy
mv x/file vy/

Commit and release x,y

Why don’t we log this?

Process B

Lock x, vy, log
grep across x and y

grep x/* y/* > log
Commit and release x, y, log

Ensures grep occurs either
before or after move

Serializability

* With two phase locking and redo logging, transactions
appear to occur in a sequential order (serializability)

— Either: grep then move or move then grep

* Other implementations can also provide serializability
— Isolation also achieved by multi-version concurrency control

— Optimistic concurrency control: abort any transaction that
would conflict with serializability

Question

* Do we need the copy back?
— What if random disk update inplace-is very expensive?
— Ex: flash storage, RAID

Log Structure

* Logis the data storage; no copy back

— Storage split into contiguous fixed size segments
e Flash: size of erasure block
* Disk: efficient transfer size (e.g., 1MB)

— Log new blocks into empty segment
* Garbage collect dead blocks to create empty segments

— Each segment contains extra level of indirection
* Which blocks are stored in that segment

* Recovery
— Find last successfully written segment

Storage Availability

* Storage reliability: data fetched is what you stored
— Transactions, redo logging, etc.

e Storage availability: data is there when you want it
— More disks => higher probability of some disk failing
— Data available ~ Prob(disk working)"k
* If failures are independent and data is spread across k disks

— For large k, probability that system works -> 0
* .95 prob working, all k working .95k, k=10 => 59%
* k=50 =>8%!

RAID

* Replicate data for availability
— RAID 0: no replication

— RAID 1: mirror data across two or more disks

* Google File System replicated its data on three disks,
spread across multiple racks

— RAID 5: split data across disks, with redundancy to
recover from a single disk failure

— RAID 6: RAID 5, with extra redundancy to recover
from two disk failures

RAID 1: Mirroring

Replicate writes to
ooth disks

Reads can go to
either disk

e —
Disk O

Data Block 0
Data Block 1

Data Block 2

Data Block 3

Data Block 4
Data Block 5

Data Block 6
Data Block 7

Data Block 8

Data Block 9
Data Block 10
Data Block 11
Data Block 12
Data Block 13
Data Block 14
Data Block 15
Data Block 16
Data Block 17
Data Block 18
Data Block 19

e ——
Disk 1

Data Block O
Data Block 1

Data Block 2

Data Block 3

Data Block 4
Data Block 5

Data Block 6
Data Block 7

Data Block 8

Data Block 9
Data Block 10
Data Block 11
Data Block 12
Data Block 13
Data Block 14
Data Block 15
Data Block 16
Data Block 17
Data Block 18
Data Block 19

t-q_________._._,_,_.J

Parity

e Parity block: Block1 xor block2 xor block3 ...

10001101 blockl
01101100 block?2
11000110 Dblock3

00100111 parity block

* Can reconstruct any missing block from the others

RAID 5

e Stripe to increase bandwidth
* Strip is a sequential part of a stripe

Stripe 0

Stripe 1

Stripe 2

RAID 5: Rotating Parity

e —
Disk 0

Strip (0,0)
Parity (0,0,0)
Parity (1,0,0)
Parity (2,0,0)
Parity (3,0,0)

Strip (0,1)
Data Block 16
Data Block 17
Data Block 18
Data Block 19

Strip (0,2)
Data Block 32
Data Block 33
Data Block 34
Data Block 35

e ——
Disk 1

Strip (1,0)
Data Block 0
Data Block 1
Data Block 2
Data Block 3

Strip (1,1)
Parity (0,1,1)
Parity (1,1,1)
Parity (2,1,1)
Parity (3,1,1)

Strip (1,2)
Data Block 36
Data Block 37
Data Block 38
Data Block 39

e —
Disk 2

Strip (2,0)
Data Block 4
Data Block 5
Data Block 6
Data Block 7

Strip (2,1)
Data Block 20
Data Block 21
Data Block 22
Data Block 23

Strip (2,2)
Parity (0,2,2)
Parity (1,2,2)
Parity (2,2,2)
Parity (3,2,2)

e ——
Disk 3

Strip (3,0)
Data Block 8
Data Block 9
Data Block 10
Data Block 11

Strip (3,1)
Data Block 24
Data Block 25
Data Block 26
Data Block 27

Strip (3,2)
Data Block 40
Data Block 41
Data Block 42
Data Block 43

e —
Disk 4

Strip (4,0)
Data Block 12
Data Block 13
Data Block 14
Data Block 15

Strip (4,1)
Data Block 28
Data Block 29
Data Block 30
Data Block 31

Strip (4,2)
Data Block 44
Data Block 45
Data Block 46

Data Block 46

RAID Update

* Mirroring
— Write every mirror
 RAID-5: to write one block
— Read old data block
— Read old parity block
— Write new data block

— Write new parity block
* Old data xor old parity xor new data

* RAID-5: to write entire stripe
— Write data blocks and parity

Non-Recoverable Read Errors

* Disk devices can lose data
— One sector per 10715 bits read

— Causes:
* Physical wear
* Repeated writes to nearby tracks

 What impact does this have on RAID
recovery?

Read Errors and RAID recovery

 Example
— 10 1 TB disks, and 1 fails
— Read remaining disks to reconstruct missing data

* Probability of recovery =
(1 —10715)7(9 disks * 8 bits * 10712 bytes/disk)
=93%

e Solutions:

— RAID-6: two redundant disk blocks
e parity, linear feedback shift

— Scrubbing: read disk sectors in background to find and
fix latent errors

