
File Systems

Chapter 11, 13 OSPP



What is a File?



What is a Directory?



Goals of File System

• Performance
• Controlled Sharing
• Convenience: naming
• Reliability



File System Workload

• File sizes
– Are most files small or large?
– Which accounts for more total storage: small or 

large files?



File System Workload

• File access
– Are most accesses to small or large files?
– Which accounts for more total I/O bytes: small or 

large files?



File System Workload

• How are files used?
– Most files are read/written sequentially
– Some files are read/written randomly

• Ex: database files, swap files

– Some files have a pre-defined size at creation
– Some files start small and grow over time

• Ex: program stdout, system logs



File System Abstraction

• Path
– String that uniquely identifies file or directory
– Ex: /cse/www/education/courses/cse451/12au

• Links
– Hard link: link from name to metadata location
– Soft link: link from name to alternate name

• Mount
– Mapping from name in one file system to root of 

another



UNIX File System API

• create, link, unlink, createdir, rmdir
– Create file, link to file, remove link
– Create directory, remove directory

• open, close, read, write, seek
– Open/close a file for reading/writing
– Seek resets current position

• fsync
– File modifications can be cached
– fsync forces modifications to disk (like a memory 

barrier)



File System Interface

• UNIX file open is a Swiss Army knife:
– Open the file, return file descriptor
– Options: 

• if file doesn’t exist, return an error
• If file doesn’t exist, create file and open it
• If file does exist, return an error
• If file does exist, open file
• If file exists but isn’t empty, nix it then open
• If file exists but isn’t empty, return an error
• …



Implementation

• Disk buffer cache
• File layout
• Directory layout



Cache

• File consistency vs. loss
• Delayed write:

– cache replacement
– sync: Linux every 30 seconds flush the cache

• Write-through:
– each write into cache goes to disk

• Can also read-ahead: request block logical 
block k, fetch k+1



File System Design Constraints
• For small files:

– Small blocks for storage efficiency
– Files used together should be stored together

• For large files:
– Contiguous allocation for sequential access
– Efficient lookup for random access

• May not know at file creation
– Whether file will become small or large
– Whether file is persistent or temporary
– Whether file will be used sequentially or randomly



File System Design

• Data structures
– Directories: file name -> file metadata

• Store directories as files

– File metadata: how to find file data blocks
– Free map: list of free disk blocks

• How do we organize these data structures?
– Device has non-uniform performance



Design Challenges

• Index structure
– How do we locate the blocks of a file?

• Index granularity
– What block size do we use?

• Free space
– How do we find unused blocks on disk?

• Locality
– How do we preserve spatial locality?

• Reliability
– What if machine crashes in middle of a file system op?



File System Design Options

FAT FFS NTFS

Index 
structure

Linked list Tree
(fixed)

Tree
(dynamic)

granularity block block extent

free space
allocation

FAT array Bitmap
(fixed 

location)

Bitmap 
(file)

Locality defragmentation Block groups
+ reserve 

space

Extents
Best fit
defrag



Named Data in a File System



Microsoft File Allocation Table (FAT)

• Linked list index structure
– Simple, easy to implement
– Still widely used (e.g., thumb drives)

• File table:
– Linear map of all blocks on disk
– Each file a linked list of blocks



FAT



FAT

• Pros:
• Cons:



Berkeley UNIX FFS (Fast File System)

• inode table
– Analogous to FAT table

• inode
– Metadata
– Set of 12 direct data pointers
– 4KB block size



FFS inode

• Metadata
– File owner, access permissions, access times, …

• Set of 12 data pointers
– With 4KB blocks => max size of 48KB files

• Indirect block pointer
– pointer to disk block of data pointers

• Indirect block: 1K data blocks => ?



FFS inode

• Doubly indirect block pointer
– Doubly indirect block => 1K indirect blocks
– ?

• Triply indirect block pointer
– Triply indirect block => 1K doubly indirect blocks
– ?





Permissions

• setuid
• setgid



Named Data in a File System



Directories Are Files



Recursive Filename Lookup



Directory Layout

Directory stored as a file
Linear search to find filename (small directories)



Putting it all together

/foo/bar/baz



Links



FFS Asymmetric Tree

• Small files: shallow tree
– Efficient storage for small files

• Large files: deep tree
– Efficient lookup for random access in large files

• Sparse files: only fill pointers if needed



Small Files



Sparse Files



FFS Locality

• Block group allocation
– Block group is a set of nearby cylinders
– Files in same directory located in same group
– Subdirectories located in different block groups

• inode table spread throughout disk
– inodes, bitmap near file blocks

• First fit allocation
– Small files fragmented, large files contiguous 





FFS First Fit Block Allocation



FFS First Fit Block Allocation



FFS First Fit Block Allocation



FFS
• Pros

– Efficient storage for both small and large files
– Locality for both small and large files
– Locality for metadata and data

• Cons
– Inefficient for tiny files (a 1 byte file requires both an 

inode and a data block)
– Inefficient encoding when file is mostly contiguous on 

disk (no equivalent to superpages)



NTFS

• Master File Table
– Flexible 1KB storage for metadata and data

• Extents
– Block pointers cover runs of blocks
– Similar approach in linux (ext4)
– File create can provide hint as to size of file

• Journaling for reliability
– Coming soon



NTFS Small File



NTFS Medium-Sized File



NTFS Indirect Block



Large Directories: B Trees



Large Directories: Layout



Copy-on-Write



LFS



Limitations of existing file systems
• They spread information around the disk 

– data blocks of a single large file may be together, but …
– inodes stored apart from data blocks
– directory blocks separate from file blocks
– writing small files -> less than 5% of disk bandwidth is 

used to access new data, rest of time is seeking

• Use synchronous writes to update directories and 
inodes
– required for consistency
– makes seeks even more painful; stalls CPU



Key Idea

• Write all modifications to disk sequentially in a 
log-like structure

– Convert many small random writes into large 
sequential transfers

– Use file cache as write buffer first, then write to 
disk sequentially

– Assume crashes are rare



Main advantages
• Replaces many small random writes by fewer 

sequential writes

• Faster recovery after a crash
– all blocks that were recently written are at the tail 

end of log

• Downsides?



The Log
• Log contains modified inodes, data blocks, and 

directory entries

• Most reads will access data already in the cache
– If not, it can get expensive to go through the log if files 

are fragmented
• No freelist!
• Only structures on disk are the log and 
• inode-map (maps inode # to its disk position) located 

in well-known place on the disk



Disk layouts of LFS and UNIX

Disk

Disk

Log

Inode Directory Data Inode map

LFS

Unix FFS

dir1 dir2

file1 file2

dir1 dir2

file1 file2



Segments
• Must maintain large free disk-areas for writing new 

data
– Disk is divided into large fixed-size areas called 

segments (512 kB in Sprite LFS)

• Segments are always written sequentially from one 
end to the other
– Includes summary information 

• Keep writing the log out … problem?



Issues

• Issues: 
– when to run cleaner?
– how many segments to clean at a time?
– which segments to clean?
– how to re-write the live blocks?

• First two – they advocate simple thresholds
(want % of free segments)



Segment cleaning
• Old segments contain

– live data
– “dead data” belonging to files that were deleted or 

over-written

• Segment cleaning involves reading in and writing 
out the live data

• Segment summary block identifies each piece of 
information in the segment (for data blocks to 
which inodes  are they associated)



Segment cleaning (cont’d)
• Segment cleaning process involves

1. reading a number of segments into memory 
(which)

2. identifying the live data
3. writing them back to a smaller number of clean 

segments (how)



Write cost
u = utilization

(fraction of live data)



Segment Cleaning Policies: which

• Greedy policy: always cleans the least-
utilized segments

• Cost-benefit policy: selects segments with 
the highest benefit-to-cost ratio

1 to read, u to copyolder data – more stable
newer data – more likely to be modified or deleted –
cleaning wastes time



Copying life blocks: where

• Age sort:
– sorts the blocks by the time they were last 

modified 
– groups blocks of similar age together into new 

segments

• Age of a block is good predictor of its survival
• Supports cost-benefit policy



Using a cost benefit policy

Cost benefit policy works much better – at high utilization



Systems Mantras
• Be clever at high utilization!
• Bulk operations work better than large 

number of smaller ones


	File Systems
	What is a File?
	What is a Directory?
	Goals of File System
	File System Workload
	File System Workload
	File System Workload
	File System Abstraction
	UNIX File System API
	File System Interface
	Implementation
	Cache
	File System Design Constraints
	File System Design
	Design Challenges
	File System Design Options
	Named Data in a File System
	Microsoft File Allocation Table (FAT)
	FAT
	FAT
	Berkeley UNIX FFS (Fast File System)
	FFS inode
	FFS inode
	Slide Number 24
	Permissions
	Named Data in a File System
	Directories Are Files
	Recursive Filename Lookup
	Directory Layout
	Putting it all together
	Links
	FFS Asymmetric Tree
	Small Files
	Sparse Files
	FFS Locality
	Slide Number 36
	FFS First Fit Block Allocation
	FFS First Fit Block Allocation
	FFS First Fit Block Allocation
	FFS
	NTFS
	NTFS Small File
	NTFS Medium-Sized File
	NTFS Indirect Block
	Large Directories: B Trees
	Large Directories: Layout
	Copy-on-Write
	LFS
	Limitations of existing file systems
	Key Idea
	Main advantages
	The Log
	Disk layouts of LFS and UNIX
	Segments
	Issues
	Segment cleaning
	Segment cleaning (cont’d)
	Write cost
	Segment Cleaning Policies: which
	Copying life blocks: where
	Using a cost benefit policy
	Systems Mantras

