
Final class



Today

• Back to reliability briefly

• Circle-back to two missed topics
– Software protection Chap 8.4

– Fault tolerance 10.3

• Course wrap up

• Evaluations

• How are the VMs working?



Software Protection

• Talked about hardware protection

– Address translation, mode bits

• What about doing this in software, reasons:

– Simplify hardware

– Application-level protection (e.g. browser needs to 
protect itself)

– Protection inside the kernel itself (e.g. 3rd party 
device drivers)



Methods
• Trap for each instruction?

• Way too expensive

– Solution (browser as OS)

• Interpreters, e.g. JavaScript

• JavaScript attacks: cross-scripting

– Isolate

• Run browser within a controlled process: protect OS

• Run tab in its own process: protect browser



More Methods

– Use safe language, trusted compilers
• Users don’t want to be constrained (e.g. Java everywhere)

• Language-independent solution
• Sandbox

• Compile software memory checks into executable 

• E.g. native-client (does this for C code)

• mov addr reg =>

if addr between low&high => mov addr reg

• Downsides?



Fault Tolerance

• Long-running program meets power-glitch

• Checkpoint/restart
– User-level

– System-level

– Issues?
• Kernel state

• Size of checkpoint

– Block until done or

not (copy-on-write)



Solutions

• Checkpoints can be large

– Memory-intensive, virtual machines, kernel state, …

– Performance issue

• #1 Periodic checkpoints 

– Take periodic snapshots and log of subsequent operations: 
replay log against most recent checkpoint at restart

• Restart cost: re-executions

• #2 Take checkpoint as a delta over previous one
• Restart requires reading many checkpoints



Solutions

• Incremental checkpoints 



The END



Major Topics: 100K feet

• Protection

– Kernel/user mode, system calls

• Concurrency

– Threads, synchronization, deadlock, scheduling

• Memory management

– Address translation, demand paging, virtual memory

• File systems

– Disk, flash, file layout, reliability/transactions



OS as Referee

• Protection

– OS isolates apps from bugs or attacks in other apps

• CPU scheduling

– OS decides which application thread is next onto the 
processor

• Memory allocation

– OS decides how many memory frames given to each app

• File system

– OS enforces security policy in accessing file data



OS as Illusionist

Physical Reality Abstraction

Limited # of CPUs Can assume near infinite # of 
processes/threads

CPU interrupts and time slicing Each thread appears to run 
sequentially (at variable speed)

Limited physical memory Near-infinite virtual memory

Apps share physical machine Isolation between apps via 
processes or VMs

Computers can crash Changes to file system are 
atomic and durable



OS as Abstraction Provider

• Locks and condition variables

– Not test&set instructions

• Named files and directories

– Not raw disk block storage

• Process

– Not x CPU cycles, y memory, z open files, …

• Memory-mapped files

– Not raw disk reads/writes



OS Trends and Future Directions
• Optimize for the computer’s time 

=> optimize for the user’s time

• One processor core => many

• One computer => server clusters

• Disk => persistent solid state memory/PCM

• Modest memory => huge memory

• Operating systems everywhere (at user level)

– browsers, databases, servers, parallel runtimes, sandboxes

• Operating system for Internet of Things



Some Cross-Cutting Themes

• Indirection

– Virtual addressing, File storage, …

• Batching to overcome latency

– Disk access, Disk scheduling, LFS

• Isolation

– processes, transactions, …



The Final

• Incremental, sort of …

• Chapters 8.4, 9, 10.3, 11, 12, 13, 14
– Virtual memory > Basics

– File systems

– Storage systems

– Reliable storage

– Software protection

• Closed book

• 75 minute exam, have over 2 hours

• Mix of short and long questions 1/3 : 2/3



Questions?



Evaluations


