
Minimax (Ch. 5-5.3)

Announcements

Writing 1 graded
- re-submission due 10/17
- email the re-submission either to me or the

TA who graded it (check Canvas
announcements for who that is)

Genetic algorithms

Genetic algorithms are based on how life has
evolved over time

They (in general) have 3 (or 5) parts:
1. Select/generate children

1a. Select 2 random parents
1b. Mutate/crossover

2. Test fitness of children to see if they survive
3. Repeat until convergence

Genetic algorithms

Selection/survival:
Typically children have a probabilistic survival
rate (randomness ensures genetic diversity)

Crossover:
Split the parent's information into two parts,
then take part 1 from parent A and 2 from B

Mutation:
Change a random part to a random value

Genetic algorithms

Nice examples of GAs:
http://rednuht.org/genetic_cars_2/
http://boxcar2d.com/

http://rednuht.org/genetic_cars_2/
http://boxcar2d.com/

Genetic algorithms

Genetic algorithms are very good at optimizing
the fitness evaluation function (assuming
fitness fairly continuous)

While you have to choose parameters
(i.e. mutation frequency, how often to take
a gene, etc.), typically GAs converge for most

The downside is that often it takes many
generations to converge to the optimal

Genetic algorithms

There are a wide range of options for selecting
who to bring to the next generation:
- always the top people/configurations (similar

to hill-climbing... gets stuck a lot)
- choose purely by weighted random (i.e.

4 fitness chosen twice as much as 2 fitness)
- choose the best and others weighted random

Can get stuck if pool's diversity becomes too
little (hope for many random mutations)

Genetic algorithms

Let's make a small (fake) example with the
4-queens problem

Q

Q
Q

Q

QQ

Q
Q

Q

Q

Q
Q

Adults:
right
1/4

left
3/4

Q

Q
Q Q

mutation

(col 2)

Q

Q

Q
Q

Child pool (fitness):

Q

QQ
Q

Q
QQ

Q

Q

Q
Q Q

Q

Q
Q

Q

(20)

(10)

(15)

=(30)

=(20)

=(30)

Genetic algorithms

Let's make a small (fake) example with the
4-queens problem

Q

Q
Q Q

Q

Q

Q
Q

Child pool (fitness):

Q

QQ
Q

Q
QQ

Q

Q

Q
Q Q

Q

Q
Q

Q

(20)

(10)

(15)

=(30)

=(20)

=(35)

Weighted random
selection:

Q
QQ

Q

Q

Q
Q Q

Q

Q

Q
Q

Genetic algorithms

https://www.youtube.com/watch?v=R9OHn5ZF4Uo

https://www.youtube.com/watch?v=R9OHn5ZF4Uo

Single-agent

So far we have look at how a single agent can
search the environment based on its actions

Now we will extend this to cases where you
are not the only one changing the state (i.e.
multi-agent)

The first thing we have to do is figure out
how to represent these types of problems

Multi-agent (competitive)

Most games only have a utility (or value)
associated with the end of the game (leaf node)

So instead of having a “goal” state (with
possibly infinite actions), we will assume:

(1) All actions eventually lead to terminal state
(i.e. a leaf in the tree)

(2) We know the value (utility) only at leaves

Multi-agent (competitive)

For now we will focus on zero-sum two-player
games, which means a loss for one person is
a gain for another

Betting is a good example of this: If I win I
get $5 (from you), if you win you get $1 (from
me). My gain corresponds to your loss

Zero-sum does not technically need to add to
zero, just that the sum of scores is constant

Multi-agent (competitive)

Zero sum games mean rather than representing
outcomes as:
[Me=5, You =-5]

We can represent it with a single number:
[Me=5], as we know: Me+You = 0 (or some c)

This lets us write a single outcome which
“Me” wants to maximize and “You” wants
to minimize

Minimax

Thus the root (our agent) will start with a
maximizing node, the the opponent will get
minimizing noes, then back to max... repeat...

This alternation of maximums and minimums
is called minimax

I will use to denote nodes that try to
maximize and for minimizing nodes

Minimax

Let's say you are treating a friend to lunch.
You choose either: Shuang Cheng or Afro Deli

The friend always orders the most inexpensive
item, you want to treat your friend to best food

Which restaurant should you go to?
Menus:
Shuang Cheng: Fried Rice=$10.25, Lo Mein=$8.55
Afro Deli: Cheeseburger=$6.25, Wrap=$8.74

Minimax

Shuang Cheng Afro Deli

8.55 6.2510.25 8.55

WrapFried
 rice

Cheese-
burger

Lo Mein

Minimax

You could phrase this problem as a set of
maximum and minimums as:
max(min(8.55, 10.25), min(6.25, 8.55))

... which corresponds to:
max(Shuang Cheng choice, Afro Deli choice)

If our goal is to spend the most money on
our friend, we should go to Shuang Cheng

Minimax

One way to solve this is from the leaves up:

1 03 4

2

L F R

L R L R

Minimax

max(min(1,3), 2, min(0, 4)) = 2, should pick
action F

1 03 4

2

L F R

L R L R
1 0

2
Order:
1st. R (can swap
2nd. B B and R)
3rd. P

 Minimax

Solve this minimax
problem:

3

10

2

2

FL R

L
R

L

1
F

8
F

24
RL

4
F

R

14
F
520

R
L

Minimax

This representation works, but even in small
games you can get a very large search tree

For example, tic-tac-toe has about 9! actions
to search (or about 300,000 nodes)

Larger problems (like chess or go) are not
feasible for this approach (more on this
next class)

Minimax

“Pruning” in real life:

“Pruning” in CSCI trees:

Snip branch

Snip branch

Alpha-beta pruning

However, we can get the same answer with
searching less by using efficient “pruning”

It is possible to prune a minimax search that
will never “accidentally” prune the optimal
solution

A popular technique for doing this is called
alpha-beta pruning (see next slide)

Alpha-beta pruning

Consider if we were finding the following:
max(5, min(3, 19))

There is a “short circuit evaluation” for this,
namely the value of 19 does not matter

min(3, x) < 3 for all x
Thus max(5, min(3,x)) = 5 for any x

Alpha-beta pruning would not search x above

Alpha-beta pruning

If when checking a min-node, we ever find
a value less than the parent's “best” value,
we can stop searching this branch

0 4
2

L
R

L R

2
Parent's best so far = 2

Child's worst = 0
STOP

Alpha-beta pruning

In the previous slide, “best” is the “alpha”
in the alpha-beta pruning
(Similarly the “worst” in a min-node is “beta”)

Alpha-beta pruning algorithm:
Do minimax as normal, except:

min node: if parent's “best” value greater than
current node, stop & tell parent current value

max node: if parent's “worst” value less than
current node, stop search and return current

Let's solve this with alpha-beta pruning

1 03 4

2

L F R

L R L R

Alpha-beta pruning

max(min(1,3), 2, min(0, ??)) = 2, should pick
action F

1 03 4

2

L F R

L R L R
1 0

2
Order:
1st. Red
2nd. Blue
3rd. Purp

Do not
consider

Alpha-beta pruning

 αβ pruning

Solve this problem
with alpha-beta pruning:

3

10

2

2

FL R

L
R

L

1
F

8
F

24
RL

4
F

R

14
F
520

R
L

Alpha-beta pruning

In general, alpha-beta pruning allows you to
search to a depth 2d for the minimax search
cost of depth d

So if minimax needs to find: O(bm)
Then, alpha-beta searches: O(bm/2)

This is exponentially better, but the worst case
is the same as minimax

Alpha-beta pruning

Ideally you would want to put your best
(largest for max, smallest for min) actions first

This way you can prune more of the tree as
a min node stops more often for larger “best”

Obviously you do not know the best move,
(otherwise why are you searching?) but some
effort into guessing goes a long way
(i.e. exponentially less states)

Side note:

In alpha-beta pruning, the heuristic for
guess which move is best can be complex,
as you can greatly effect pruning

While for A* search, the heuristic had to be
very fast to be useful
(otherwise computing the heuristic would take
longer than the original search)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 16
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 35
	Slide 36
	Slide 37
	Slide 38

