
Planning (Ch. 10)



Graph Plan

Consider this problem:



Mutexes: actions
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Mutex Action rules:



Mutexes: states

There are 2 rules for states, but unlike
action-mutexes they can change across levels

1. Opposite relations are mutexes (x and ¬x)
2. If there are mutexes between all possible

actions that “lead” to a pair of states...

Two ways that “leading” can be in mutex:
1. Actions are in mutex
2. Preconditions of action pair are in mutex



Mutexes: states

Another way to compute state mutexes:

(1) Add mutexes between all pairs in state 
(2) If any pair of actions can lead to this pair

of relationships, un-mutex them

Recap: 
If any valid pair of actions = no mutex
All ways of reaching invalid = mutex
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None...
but if we
remove 
coffee...



Mutexes: states

1. Opposite relations are mutexes (x and ¬x)
2. If there are mutexes between all possible

actions that lead to a pair of states
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Sl has mutex with both
E and NoOp(¬H)

This mutex
will be gone
on the next
level (as 
you can 
eat again)



Mutexes: states
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Mutexes: actions

Consider...



Mutexes: actions
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Mutexes: actions
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Mutexes: actions
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Non-trivial
mutexes:
(SC, P),
(J, P),
(SC, J),
(P,D&M&┐M),
(SC,┐D&┐S),
(J,┐M&S)



GraphPlan

GraphPlan can be computed in O(n(a+l)2),
where n = levels before convergence
a = number of actions
l = number of relations/literals/states
(square is due to needing to check all pairs)

The original planning problem is PSPACE,
which is known to be harder than NP



GraphPlan: states

Let's consider this problem:



GraphPlan: states
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Mutexes
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Possible state pairs:
F, C C, Q
F,┐C C, ┐Q
F, G C, P
F, ┐G ┐C, G
F, Q ┐C, ┐G
F, ┐Q ┐C, Q
F, P ┐C, ┐Q
C, ┐C ┐C, P
C, G ... (more)
C, ┐G
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here!
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Pink = new mutex



GraphPlan as heuristic

GraphPlan is optimistic, so if any pair of goal
states are in mutex, the goal is impossible

3 basic ways to use GraphPlan as heuristic:
(1)  Maximum level of all goals
(2)  Sum of level of all goals (not admissible)
(3)  Level where no pair of goals is in mutex

(1) and (2) do not require any mutexes, but are 
less accurate (quick 'n' dirty)



GraphPlan as heuristic

For heuristics (1) and (2), we relax as such:
1. Multiple actions per step, so can only take

fewer steps to reach same result
2. Never remove any states, so the number

of possible states only increases

This is a valid simplification of the problem,
but it is often too simplistic directly



GraphPlan as heuristic

Heuristic (1) directly uses this relaxation and
finds the first time when all 3 goals appear
at a state level

(2) tries to sum the levels of each individual
first appearance, which is not admissible
(but works well if they are independent parts)

Our problem: goal={Food, ┐Garbage, Present}
First appearance: F=1, ┐G=1, P=1 



GraphPlan: states
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Level 0: Level 1:

Heuristic (1): 
Max(1,1,1) = 1

Heuristic (2):
1+1+1=3



GraphPlan as heuristic

Often the problem is too trivial with just
those two simplifications

So we add in mutexes to keep track of invalid
pairs of states/actions

This is still a simplification, as only impossible
state/action pairs in the original problem are
in mutex in the relaxation



GraphPlan as heuristic

Heuristic (3) looks to find the first time none
of the goal pairs are in mutex

For our problem, the goal states are:
(Food, ┐Garbage, Present)

So all pairs that need to have no mutex:
(F, ┐G), (F, P), (┐G, P)



Mutexes
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Finding a solution

GraphPlan can also be used to find a solution:
(1) Converting to a Constraint Sat. Problem
(2) Backwards search

Both of these ways can be run once GraphPlan
has all goal pairs not in mutex (or converges)

Additionally, you might need to extend 
it out a few more levels further to find a
solution (as GraphPlan underestimates)



GraphPlan as CSP

Variables = states, Domains = actions to there
Constraints = mutexes & preconditions

from Do & Kambhampati



Finding a solution

For backward search, attempt to find arrows
back to the initial state(without conflict/mutex)

Start by finding actions that satisfy all goal
conditions, then recursively try to satisfy
all of the selected actions’ preconditions

If this fails to find a solution, mark this level
and all the goals not satisfied as: (level, goals)
(level, goals) stops changing, no solution



Graph Plan

Remember this...



Graph Plan
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Graph Plan
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Graph Plan
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Finding a solution

Formally, the algorithm is:

graph = initial
noGoods = empty table (hash)
for level = 0 to infinity

if all goal pairs not in mutex
solution = recursive search with noGoods
if success, return paths

if graph & noGoods converged, return fail
graph = expand graph
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You try it!
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