I Using first order logic (Ch. 8-9)

&6 lalive | alive

K X
sest | S| MR

ldead

I In first order logic, we have objects and
I relations between objects

Review: First order logic

The relations are basically a list of all valid
tuples that satisty the relation

We can also have variables that represent
objects often used in conjunction with
quantifiers: Y/, =

I “Everyone in class is sitting in a seat”
“If someone is sitting in a seat it is occupied”
“At least one seat is not occupied”
“No one is sharing a seat”

First order logic

Let's translate English into first order logic:

Objects: People (p1, p2, ...), Chairs (c1, c2, ...)
Relations: InClass(x), InSeath,yg\, Occupied(x)
Person(x), Chair(x) persorn chair

I “Everyone in class is sitting in a seat”
I Vo Person(z) A InClass(x) = (Jy Chair(y) A InSeat(z,y))

“If someone is sitting in a seat it is occupied”
Yy, & Person(x) A Chair(y) A InSeat(z,y) = Occupied(y)

“At least one seat is not occupied”
dy Chair(y) A ~Occupied(y)

“No one is sharing a seat”
Va1, 29,y Person(xy) A Person(xs) A Chair(y)
AInSeat(x1,y) A InSeat(xs,y) = (11 =)

First order logic

I General guide:
https://cs.nyu.edu/faculty/davise/ai/folguide.pdtf

First order logic

More practice?

Examples:
http://www.uobabylon.edu.ig/eprints/publication_5_29514 1380.pdf

https://math.stackexchange.com/questions/2209569/how-to-translate-the-following-sentences-into-first-order-logic

https://cs.nyu.edu/faculty/davise/ai/folguide.pdf
http://www.uobabylon.edu.iq/eprints/publication_5_29514_1380.pdf
https://math.stackexchange.com/questions/2209569/how-to-translate-the-following-sentences-into-first-order-logic

I Assumptions

For this reason, we make 3 assumptions:
I 1. Objects are unique (i.e. Bob # Jack always)

2. All un-said sentences are false
Thus, if I only say: Brother(James, Bob)
then I imply: —Brother(James, Jack)

3. Only objects I have specified exist
(i.e. I assume a person Davis does not
exists as I never mentioned them)

Assumptions

These assumptions make it easier to write
I sentences more compactly

Under these assumptions, “My sisters are
Alice and Grace” can be represented as:

Sister(James, Alice) A\ Sister(James, Grace)

These assumptions do make it harder to say
more general sentences, such as: “ITwo of my
sisters are Alice and Grace”

First order logic

I propositional logic, we had to write:

P1,1,1AN=-P1,1,2A-P1,1,3 [1]2
A—P1 =

NP1
How would you write the whole current

)

)

-1

1,4 A=P1,1,5 A=P1,1,6

1,7A=P1,1,8 A -P1,1,B

To express the top left cell for mindsweep in

1
2

knowledge for all 5 cells in first order logic?
(not the game logic, just current state)

Hint: What are objects? Relations?

First order logic

N

I
N =

First order logic:
One(|1,1]) A One((1,2]) A One([1,3]) A Two([2,1]) A Two(|2, 3])
Then we just also need to say that cells

can only have one number/bomb
Vixl, yl], 22, y2], [£3, y3]...[29, y9] One(|x1,yl]) AN Two(|x2,y2])
NThree(|x3,y3]) A ... N Eight(|x8,y8]) A Bomb(|x9, y9])
= |x1,yl] # [22,y2] # [x3,y3]| # ... # (29, y9]

Using First order logic

I The rest of chapter 8 is boring, so we will skip
I (though good practice for logic representation)

We will go ahead into Ch. 9 and talk about
how to use first order logic with entailment

First we will look at how we can simplify
some of the quantifiers

Universal instantiation

With a universal quantifier, V/, this means you
I can replace it with any object

For example:

Objects = {Sue, Bob, Devin}
Sentence = Vx IsHuman(zx)

You can conclude: IsHuman(Sue)
Al s Human(Bob)
A sHuman(Devin)

I With an existential quantifier, , there is some
I object that makes this true...

Existential instantiation

So you give it a name of a new object (that is
equal to an existing object)

Objects = {Spider, Dragon, Pangolin }
Sentence = dx Mammal(x)

You can conclude: M ammal(M1)

where M1 = Spider V M1 = Dragon V M1 = Pangolin

Convert to propositional logic

You can convert first order logic back into
I propositional logic by using instantiation

Objects = {Tree, Car}
Sentences:Vx Alive(x) = Reproduce(x)

Alive(Tree)
Instantiation:

Alive(Tree) = Reproduce(Tree)
Alive(Car) = Reproduce(Car)
Aliwve(Tree)

I Once you have this, you can treat each
I relation/object as a single proposition uniquely

identified by the characters
Alive(Tree) = Reproduce(Tree)

Alive(Car) = Reproduce(Car)

Aliwve(Tree)
... could turn into:
AT = RT

AC = R(C'... and we could use our old
AT techniques to ask information

Convert to propositional logic

I Convert to propositional logic

This explanation glosses over two important
I facts... what?

I Convert to propositional logic

This explanation glosses over two important
I facts... what?

1. Equals
2. Functions

(1) is easier to tackle as you can remove this
when doing instantiation/enumeration

You simply remove the invalid statements

Remove equality

Removing = after instantiation:
Object={A,B}
Sentence:Vx,y x # y = Dif ferent(x,y)

InstantiationA 7 A= Dif ferent(A, A)

/A #+ B = Dif ferent(A, B)

B # A= Different(B, A)

/B + B = Dif ferent(B, B)
Remove True = Dif ferent(A, B)
conflicts: True = Dif ferent(B, A)

I I have skimmed on functions, but similar to
I math functions they can be applied repeatedly

Converting functions

Define: PlusPlus(x): © — ¢ + 1
PlusPlus(1) = 2
PlusPlus(PlusPlus(1)) = 3

... and so on (no limit to number of functions)

When converting to prop. logic, you have to
apply functions everywhere possible...

I This means the propositional logic conversion
I might have an infinite number of propositions

Converting functions

A theorem shows you only need a finite
number of function calls to decide entailment

Step 1: See if entailed with no functions
Step 2: See if entailed with 1 function call

Step 3: See if entailed with 2 function calls
Step 4. ...

I At some finite step, if entailment is possible
I it will be found

Converting functions

Unfortunately, how many is unknown so
it is impossible to find if something is not
entailed in the propositional logic

(this is semi-decidable)

Even without functions if there are p k-ary
relations with n objects, you get: O(p*n*)

I A unification is a substitution for variables

I that creates a valid sentence by specifying
a map between variables and objects

Unification

For example, consider:

Objects = {Sue, Alex, Devin}

Vo dy Sibling(z, y)

Sibling(Sue, Devin)
—Sibling(Devin, Alex)

What variables can we unify/substitute?

I Unification

I Objects = {Sue, Alex, Devin}
Vo dy Sibling(x,y)
Sibling(Sue, Devin)
—Sibling(Devin, Alex)
First sentence is the only one with variables,
there are 9 options (only 6 if x # y)

One unification is {x/Sue, y/Devin}

We cannot say {x/Devin, y/Alex}, as this is
creates a contradiction

I We do not need to convert to propositional
I logic to use some rules of reasoning

General modus ponens

Modus ponens can be applied even if there

are variables, as long as we can unify them:
Vx Large(x) A Alive(x) = Dangerous(x)
Ve Alive(x)

Large(Hippo)

We can unify the top sentence with {x/Hippo},
so we can conclude: Dangerous(Hippo)

I General modus ponens

If you want to use this general modus ponens,
I finding the unification can be expensive

You basically need to try all substitutions,
though you can store your data in smart ways
to make look-up much more quickly

Using just general modus ponens, you can do
basic inference with first order logic
(what is the problem??)

I General modus ponens

Objects = {Cat, Dog, Frog, Rat, Sally, Jane}
I dx Zodiac(x)
vV Alive(x) = Birthday(z)
Vo Alive(x) = Fats(x)
Va,y Birthday(x) = Party(x,y)
Vo Zodiac(x) N\ Birthday(x) = Happy(x)
Alive(Sally)

Is Sally happy?
How about Party(Sally, Frog)?

General modus ponens

We can substitute {x/Sally} here with MP:
Vx Alive(x) = Birthday(x)

To get: Birthday(Sally)
Then sub. {x/Sally, y/Frog} with MP here:
Va,y Birthday(x) = Party(x,y)

To get: Party(Sally, Frog)

However, we cannot tell it Sally is happy,
as we cannot unify: Zodiac(sl)

Birthday(Sally)

I You try!
Vo Meat(x) A Make(Bread, x, Bread) = Sandwich(Bread)

Ve, y OnGrill(z,y) A Sandwich(y) = Grilled(y)
Ve, y OnGrill(z,y) A Meat(y) = Grilled(y)

dr Meat(x)

Ve, y OnGrill(z, y)

Ve, y, 2 Make(z,y, 2)

Bread
Can you get Grilled(Bread)?

How about Grilled(Chicken)?

General modus ponens

I You try!
Vo Meat(x) A Make(Bread, x, Bread) = Sandwich(Bread)

Ve, y OnGrill(z,y) A Sandwich(y) = Grilled(y)
Ve, y OnGrill(z,y) A Meat(y) = Grilled(y)

dr Meat(x)

Ve, y OnGrill(z, y)

Ve, y, 2 Make(z,y, 2)

Bread
Can you get Grilled(Bread)? Yes

How about Grilled(Chicken)? No

General modus ponens

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

