I Using first order logic (Ch. 8-9)
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I In first order logic, we have objects and
I relations between objects

Review: First order logic

The relations are basically a list of all valid
tuples that satisty the relation

We can also have variables that represent
objects often used in conjunction with
quantifiers: Y/, =




I “Everyone in class is sitting in a seat”
“If someone is sitting in a seat it is occupied”
“At least one seat is not occupied”
“No one is sharing a seat”

First order logic

Let's translate English into first order logic:

Objects: People (p1, p2, ...), Chairs (c1, c2, ...)
Relations: InClass(x), InSeath,yg\, Occupied(x)
Person(x), Chair(x) persorn chair



I “Everyone in class is sitting in a seat”
I Vo Person(z) A InClass(x) = (Jy Chair(y) A InSeat(z,y))

“If someone is sitting in a seat it is occupied”
Yy, & Person(x) A Chair(y) A InSeat(z,y) = Occupied(y)

“At least one seat is not occupied”
dy Chair(y) A ~Occupied(y)

“No one is sharing a seat”
Va1, 29,y Person(xy) A Person(xs) A Chair(y)
AInSeat(x1,y) A InSeat(xs,y) = (11 = )

First order logic



I General guide:
https://cs.nyu.edu/faculty/davise/ai/folguide.pdtf

First order logic

More practice?

Examples:
http://www.uobabylon.edu.ig/eprints/publication_5_29514 1380.pdf

https://math.stackexchange.com/questions/2209569/how-to-translate-the-following-sentences-into-first-order-logic


https://cs.nyu.edu/faculty/davise/ai/folguide.pdf
http://www.uobabylon.edu.iq/eprints/publication_5_29514_1380.pdf
https://math.stackexchange.com/questions/2209569/how-to-translate-the-following-sentences-into-first-order-logic

I Assumptions

For this reason, we make 3 assumptions:
I 1. Objects are unique (i.e. Bob # Jack always)

2. All un-said sentences are false
Thus, if I only say: Brother(James, Bob)
then I imply: —Brother(James, Jack)

3. Only objects I have specified exist
(i.e. I assume a person Davis does not
exists as I never mentioned them)



Assumptions

These assumptions make it easier to write
I sentences more compactly

Under these assumptions, “My sisters are
Alice and Grace” can be represented as:

Sister(James, Alice) A\ Sister(James, Grace)

These assumptions do make it harder to say
more general sentences, such as: “ITwo of my
sisters are Alice and Grace”



First order logic

I propositional logic, we had to write:

P1,1,1AN=-P1,1,2A-P1,1,3 [1]2
A—P1 =

NP1
How would you write the whole current

)

)

-1

1,4 A=P1,1,5 A=P1,1,6

1,7A=P1,1,8 A -P1,1,B

To express the top left cell for mindsweep in

1
2

knowledge for all 5 cells in first order logic?
(not the game logic, just current state)

Hint: What are objects? Relations?



First order logic

N

I
N =

First order logic:
One(|1,1]) A One((1,2]) A One([1,3]) A Two([2,1]) A Two(|2, 3])
Then we just also need to say that cells

can only have one number/bomb
Vixl, yl], 22, y2], [£3, y3]...[29, y9] One(|x1,yl]) AN Two(|x2,y2])
NThree(|x3,y3]) A ... N Eight(|x8,y8]) A Bomb(|x9, y9])
= |x1,yl] # [22,y2] # [x3,y3]| # ... # (29, y9]



Using First order logic

I The rest of chapter 8 is boring, so we will skip
I (though good practice for logic representation)

We will go ahead into Ch. 9 and talk about
how to use first order logic with entailment

First we will look at how we can simplify
some of the quantifiers



Universal instantiation

With a universal quantifier, V/, this means you
I can replace it with any object

For example:

Objects = {Sue, Bob, Devin}
Sentence = Vx IsHuman(zx)

You can conclude: IsHuman(Sue)
Al s Human(Bob)
A sHuman(Devin)



I With an existential quantifier, , there is some
I object that makes this true...

Existential instantiation

So you give it a name of a new object (that is
equal to an existing object)

Objects = {Spider, Dragon, Pangolin }
Sentence = dx Mammal(x)

You can conclude: M ammal(M1)

where M1 = Spider V M1 = Dragon V M1 = Pangolin



Convert to propositional logic

You can convert first order logic back into
I propositional logic by using instantiation

Objects = {Tree, Car}
Sentences:Vx Alive(x) = Reproduce(x)

Alive(Tree)
Instantiation:

Alive(Tree) = Reproduce(Tree)
Alive(Car) = Reproduce(Car)
Aliwve(Tree)



I Once you have this, you can treat each
I relation/object as a single proposition uniquely

identified by the characters
Alive(Tree) = Reproduce(Tree)

Alive(Car) = Reproduce(Car)

Aliwve(Tree)
... could turn into:
AT = RT

AC = R(C'... and we could use our old
AT techniques to ask information

Convert to propositional logic



I Convert to propositional logic

This explanation glosses over two important
I facts... what?



I Convert to propositional logic

This explanation glosses over two important
I facts... what?

1. Equals
2. Functions

(1) is easier to tackle as you can remove this
when doing instantiation/enumeration

You simply remove the invalid statements



Remove equality

Removing = after instantiation:
Object={A,B}
Sentence:Vx,y x # y = Dif ferent(x,y)

InstantiationA 7 A= Dif ferent(A, A)

/A #+ B = Dif ferent(A, B)

B # A= Different(B, A)

/B + B = Dif ferent(B, B)
Remove True = Dif ferent(A, B)
conflicts: True = Dif ferent(B, A)



I I have skimmed on functions, but similar to
I math functions they can be applied repeatedly

Converting functions

Define: PlusPlus(x): © — ¢ + 1
PlusPlus(1) = 2
PlusPlus(PlusPlus(1)) = 3

... and so on (no limit to number of functions)

When converting to prop. logic, you have to
apply functions everywhere possible...



I This means the propositional logic conversion
I might have an infinite number of propositions

Converting functions

A theorem shows you only need a finite
number of function calls to decide entailment

Step 1: See if entailed with no functions
Step 2: See if entailed with 1 function call

Step 3: See if entailed with 2 function calls
Step 4. ...



I At some finite step, if entailment is possible
I it will be found

Converting functions

Unfortunately, how many is unknown so
it is impossible to find if something is not
entailed in the propositional logic

(this is semi-decidable)

Even without functions if there are p k-ary
relations with n objects, you get: O(p*n*)



I A unification is a substitution for variables

I that creates a valid sentence by specifying
a map between variables and objects

Unification

For example, consider:

Objects = {Sue, Alex, Devin}

Vo dy Sibling(z, y)

Sibling(Sue, Devin)
—Sibling(Devin, Alex)

What variables can we unify/substitute?



I Unification

I Objects = {Sue, Alex, Devin}
Vo dy Sibling(x,y)
Sibling(Sue, Devin)
—Sibling(Devin, Alex)
First sentence is the only one with variables,
there are 9 options (only 6 if x # y)

One unification is {x/Sue, y/Devin}

We cannot say {x/Devin, y/Alex}, as this is
creates a contradiction



I We do not need to convert to propositional
I logic to use some rules of reasoning

General modus ponens

Modus ponens can be applied even if there

are variables, as long as we can unify them:
Vx Large(x) A Alive(x) = Dangerous(x)
Ve Alive(x)

Large(Hippo)

We can unify the top sentence with {x/Hippo},
so we can conclude: Dangerous(Hippo)



I General modus ponens

If you want to use this general modus ponens,
I finding the unification can be expensive

You basically need to try all substitutions,
though you can store your data in smart ways
to make look-up much more quickly

Using just general modus ponens, you can do
basic inference with first order logic
(what is the problem??)



I General modus ponens

Objects = {Cat, Dog, Frog, Rat, Sally, Jane}
I dx Zodiac(x)
vV Alive(x) = Birthday(z)
Vo Alive(x) = Fats(x)
Va,y Birthday(x) = Party(x,y)
Vo Zodiac(x) N\ Birthday(x) = Happy(x)
Alive(Sally)

Is Sally happy?
How about Party(Sally, Frog)?



General modus ponens

We can substitute {x/Sally} here with MP:
Vx Alive(x) = Birthday(x)

To get: Birthday(Sally)
Then sub. {x/Sally, y/Frog} with MP here:
Va,y Birthday(x) = Party(x,y)

To get: Party(Sally, Frog)

However, we cannot tell it Sally is happy,
as we cannot unify: Zodiac(sl)

Birthday(Sally)



I You try!
Vo Meat(x) A Make(Bread, x, Bread) = Sandwich(Bread)

Ve, y OnGrill(z,y) A Sandwich(y) = Grilled(y)
Ve, y OnGrill(z,y) A Meat(y) = Grilled(y)

dr Meat(x)

Ve, y OnGrill(z, y)

Ve, y, 2 Make(z,y, 2)

Bread
Can you get Grilled(Bread)?

How about Grilled(Chicken)?

General modus ponens



I You try!
Vo Meat(x) A Make(Bread, x, Bread) = Sandwich(Bread)

Ve, y OnGrill(z,y) A Sandwich(y) = Grilled(y)
Ve, y OnGrill(z,y) A Meat(y) = Grilled(y)

dr Meat(x)

Ve, y OnGrill(z, y)

Ve, y, 2 Make(z,y, 2)

Bread
Can you get Grilled(Bread)? Yes

How about Grilled(Chicken)? No

General modus ponens
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