
Today 1

Software Defined Networks

 A quick overview
 Based primarily on the presentations of Prof.

Scott Shenker of UC Berkeley

“The Future of Networking, and the Past of Protocols”

 Please watch the YouTube video of Shenker’s
talk

 with a short intro to Openflow basics at the
end

Two Key Definitions

• Data Plane: processing and delivery of packets
–Based on state in routers and endpoints

–E.g., IP, TCP, Ethernet, etc.

–Fast timescales (per-packet)

• Control Plane: establishing the state in routers
–Determines how and where packets are forwarded

–Routing, traffic engineering, firewall state, …

–Slow time-scales (per control event)

• These different planes require different

abstractions

2

Limitations of Current Networks

3

http://www.excitingip.net/27/a-basic-enterprise-lan-network-architecture-block-diagram-and-components/

Switches

Limitations of Current Networks

• Enterprise networks are difficult to manage

• “New control requirements have arisen”:

–Greater scale

–Migration of VMS

• How to easily configure huge networks?

4

• Old ways to configure a network

Limitations of Current Networks

Specialized Packet
Forwarding Hardware

App App App

Specialized Packet
Forwarding Hardware

App App App

Specialized Packet
Forwarding Hardware

App App App

Specialized Packet
Forwarding Hardware

App App App

Specialized Packet
Forwarding Hardware

Operating

System

Operating

System

Operating

System

Operating

System

Operating

System

App App App

OpenFlow/SDN tutorial, Srini Seetharaman, Deutsche Telekom, Silicon Valley Innovation Center

5

Limitations of Current Networks

6

Million of lines

of source code

Billions of

gates

Many complex functions baked
into infrastructure

OSPF, BGP, multicast,
differentiated services,
Traffic Engineering, NAT,
firewalls, …

Specialized Packet
Forwarding Hardware

Operating

System

Feature Feature

OpenFlow/SDN tutorial, Srini Seetharaman, Deutsche Telekom, Silicon Valley Innovation Center

Cannot dynamically change according to network conditions

• No control plane abstraction for the whole

network!

• It’s like old times – when there was no OS…

Limitations of Current Networks

Wilkes with the EDSAC, 1949

7

Idea: An OS for Networks

Simple Packet
Forwarding
Hardware

Simple Packet
Forwarding
Hardware

Simple Packet
Forwarding
Hardware

Simple Packet
Forwarding
Hardware Simple Packet

Forwarding
Hardware

Network Operating System

Control

Programs

OpenFlow/SDN tutorial, Srini Seetharaman, Deutsche Telekom, Silicon Valley Innovation Center

8

Idea: An OS for Networks

Simple Packet
Forwarding
Hardware

Simple Packet
Forwarding
Hardware

Simple Packet
Forwarding
Hardware

Simple Packet
Forwarding
Hardware Simple Packet

Forwarding
Hardware

Network Operating System

Control

Programs

OpenFlow/SDN tutorial, Srini Seetharaman, Deutsche Telekom, Silicon Valley Innovation Center

9

Idea: An OS for Networks

• “NOX: Towards an Operating System for

Networks”

Global Network View

Protocols Protocols

Control via

forwarding

interface

Network Operating System

Control

Programs

Software-Defined Networking (SDN)

The Future of Networking, and the Past of Protocols, Scott Shenker, with Martin Casado, Teemu Koponen, Nick McKeown

10

Software Defined Networking

• No longer designing distributed control

protocols

• Much easier to write, verify, maintain, …

–An interface for programming

• NOS serves as fundamental control block

–With a global view of network

11

Software Defined Networking

• Questions:

–How to obtain global information?

–What are the configurations?

–How to implement?

–How is the scalability?

–How does it really work?

12

A Short History of SDN

~2004: Research on new management paradigms
• RCP, 4D [Princeton, CMU,….]

• SANE, Ethane [Stanford/Berkeley]

 2008: Software-Defined Networking (SDN)
 NOX Network Operating System [Nicira]

 OpenFlow switch interface [Stanford/Nicira]

 2011: Open Networking Foundation (~69 members)

• Board: Google, Yahoo, Verizon, DT, Msoft, F’book, NTT

• Members: Cisco, Juniper, HP, Dell, Broadcom, IBM,…..

 2012: Latest Open Networking Summit

• Almost 1000 attendees, Google: SDN used for their WAN

• Commercialized, in production use (few places)
13

14

The Future of Networking,

and the Past of Protocols

Scott Shenker

15

Key to Internet Success: Layers

Applications

…built on…

…built on…

…built on…

…built on…

Reliable (or unreliable) transport

Best-effort global packet delivery

Best-effort local packet delivery

Physical transfer of bits

16

Why Is Layering So Important?

• Decomposed delivery into fundamental components

• Independent but compatible innovation at each layer

• A practical success of unprecedented proportions…

• …but an academic failure

17

Built an Artifact, Not a Discipline

• Other fields in “systems”: OS, DB, DS, etc.

- Teach basic principles

- Are easily managed

- Continue to evolve

• Networking:

- Teach big bag of protocols

- Notoriously difficult to manage

- Evolves very slowly

18

Why Does Networking Lag Behind?

• Networks used to be simple: Ethernet, IP, TCP….

• New control requirements led to great complexity

- Isolation  VLANs, ACLs

- Traffic engineering  MPLS, ECMP, Weights

- Packet processing  Firewalls, NATs,
middleboxes

- Payload analysis  Deep packet inspection (DPI)

- …..

• Mechanisms designed and deployed independently

- Complicated “control plane” design, primitive functionality

- Stark contrast to the elegantly modular “data plane”

19

Infrastructure Still Works!

• Only because of “our” ability to master complexity

• This ability to master complexity is both a blessing…

- …and a curse!

20

A Better Example: Programming

• Machine languages: no abstractions

- Mastering complexity was crucial

• Higher-level languages: OS and other abstractions

- File system, virtual memory, abstract data types, ...

• Modern languages: even more abstractions

- Object orientation, garbage collection,…

Abstractions key to extracting simplicity

21

“The Power of Abstraction”

“Modularity based on abstraction

is the way things get done”

−
Barbara Liskov

Abstractions  Interfaces  Modularity

What abstractions do we have in networking?

22

Abstractions ~ Problem Decomposition

Decompose problem into basic components
(tasks)

Define an abstraction for each component

 Implementation of abstraction can focus on
one task

 If tasks still too hard to implement, return to
step 1

23

Layers are Great Abstractions

• Layers only deal with the data plane

• We have no powerful control plane abstractions!

• How do we find those control plane abstractions?

• Two steps: define problem, and then decompose it.

24

The Network Control Problem

• Compute the configuration of each physical device

- E.g., Forwarding tables, ACLs,…

• Operate without communication guarantees

• Operate within given network-level protocol

Only people who love complexity would find
this a reasonable request

25

Programming Analogy

• What if programmers had to:

- Specify where each bit was stored

- Explicitly deal with all internal communication errors

- Within a programming language with limited expressability

• Programmers would redefine problem:

- Define a higher level abstraction for memory

- Build on reliable communication abstractions

- Use a more general language

• Abstractions divide problem into tractable pieces

- And make programmer’s task easier

26

From Requirements to Abstractions

1. Operate without communication guarantees

Need an abstraction for distributed state

2. Compute the configuration of each physical device

Need an abstraction that simplifies configuration

3. Operate within given network-level protocol

Need an abstraction for general forwarding model

Once these abstractions are in place,
control mechanism has a much easier job!

27

1. Distributed State Abstraction

• Shield control mechanisms from state distribution

- While allowing access to this state

• Natural abstraction: global network view

- Annotated network graph provided through an API

• Implemented with “Network Operating System”

• Control mechanism is now program using API

- No longer a distributed protocol, now just a graph algorithm

- E.g. Use Dijkstra rather than Bellman-Ford

28

Control Program

Software Defined Network (SDN)

Network OS

Global Network View

Traditional Control MechanismsNetwork of Switches and/or Routers

Distributed algorithm running between neighbors

e.g. routing, access control

29

Major Change in Paradigm

• No longer designing distributed control protocols

- Design one distributed system (NOS)

- Use for all control functions

• Now just defining a centralized control function

Configuration = Function(view)

• If you understand this, raise your hand.

30

2. Specification Abstraction

• Control program should express desired behavior

• It should not be responsible for implementing that
behavior on physical network infrastructure

• Natural abstraction: simplified model of network

- Simple model with only enough detail to specify goals

• Requires a new shared control layer:

- Map abstract configuration to physical configuration

• This is “network virtualization”

31

Simple Example: Access Control

Global

Network

View

Abstract

Network

Model

How

What

32

Network OS

Global Network View

Abstract Network Model

Control ProgramNetwork Virtualization

Software Defined Network: Take 2

33

What Does This Picture Mean?

• Write a simple program to configure a simple model

- Configuration merely a way to specify what you want

• Examples

- ACLs: who can talk to who

- Isolation: who can hear my broadcasts

- Routing: only specify routing to the degree you care

• Some flows over satellite, others over landline

- TE: specify in terms of quality of service, not routes

• Virtualization layer “compiles” these requirements

- Produces suitable configuration of actual network devices

• NOS then transmits these settings to physical boxes

34

Network OS

Global Network View

Abstract Network Model

Control Program

Network Virtualization

Software Defined Network: Take 2

Specifies
behavior

Compiles to
topology

Transmits
to switches

35

Two Examples Uses

• Scale-out router:

- Abstract view is single router

- Physical network is collection of interconnected switches

- Allows routers to “scale out, not up”

- Use standard routing protocols on top

• Multi-tenant networks:

- Each tenant has control over their “private” network

- Network virtualization layer compiles all of these individual
control requests into a single physical configuration

• Hard to do without SDN, easy (in principle) with SDN

36

3. Forwarding Abstraction

• Switches have two “brains”

- Management CPU (smart but slow)

- Forwarding ASIC (fast but dumb)

• Need a forwarding abstraction for both

- CPU abstraction can be almost anything

• ASIC abstraction is much more subtle: OpenFlow

• OpenFlow:

- Control switch by inserting <header;action> entries

- Essentially gives NOS remote access to forwarding table

- Instantiated in OpenvSwitch

37

OpenFlow Protocol

Data Path (Hardware)

Control Path OpenFlow

Controller
(Server Software)

App App App

Ethernet Switch

38

Plumbing Primitives
<Match, Action>

Match arbitrary bits in headers:

- Match on any header, or new header

- Allows any flow granularity

Action

- Forward to port(s), drop, send to controller

- Overwrite header with mask, push or pop

- Forward at specific bit-rate

38

Header Data

Match: 1000x01xx0101001x

39

OpenFlow Table Entry

3

9

Switch

Port

MAC

src

MAC

dst

Eth

type

VLAN

ID

IP

Src

IP

Dst

IP

Prot

TCP

sport

TCP

dport

Rule Action Stats

+ mask

Packet + byte counters

The Stanford Clean Slate Program, http://cleanslate.stanford.edu

1.Forward packet to port(s)

2.Encapsulate and forward to controller

3.Drop packet

4.Send to normal processing pipeline

5.…

40

Research Experiments

Step 1:
Separate Control from Datapath

41

Step 2:
Cache flow decisions in datapath

“If header = x, send to port 4”

“If header = ?, send to me”

“If header = y, overwrite header with z, send to ports 5,6”

Flow

Table

42

OpenFlow Usage

Controller

PC

OpenFlow Switch

OpenFlow Switch OpenFlow Switch

Alice’s code

Decision?
OpenFlow
Protocol

Alice’s Rule

Alice’s Rule Alice’s Rule

4

2

OpenFlow/SDN tutorial, Srini Seetharaman, Deutsche Telekom, Silicon Valley Innovation Center

» Alice’s code:
˃ Simple learning switch
˃ Per Flow switching
˃ Network access

control/firewall
˃ Static “VLANs”
˃ Her own new routing

protocol:
unicast, multicast, multipath

˃ Home network manager
˃ Packet processor (in

controller)
˃ IPvAlice

43

OpenFlow Standardization

Version 1.0: Most widely used version

Version 1.1: Released in February 2011.

OpenFlow transferred to ONF in March 2011.

44

Specialized Packet
Forwarding Hardware

Feature Feature

Specialized Packet
Forwarding Hardware

Specialized Packet
Forwarding Hardware

Specialized Packet
Forwarding Hardware

Specialized Packet
Forwarding Hardware

Operating

System

Operating

System

Operating

System

Operating

System

Operating

System

Network OS

Feature Feature

Feature Feature

Feature Feature

Feature Feature

Feature Feature

Restructured Network

45

Feature Feature

Network OS

1. Open interface to packet forwarding

3. Well-defined open API
2. At least one Network OS

probably many.

Open- and closed-source

Software-Defined Network

Packet
Forwarding

Packet
Forwarding

Packet
Forwarding

Packet
Forwarding

Packet
Forwarding

46

Does SDN Work?

• Is it scalable? Yes

• Is it less responsive? No

• Does it create a single point of failure? No

• Is it inherently less secure? No

• Is it incrementally deployable? Yes

47

SDN: Clean Separation of Concerns

• Control prgm: specify behavior on abstract model

- Driven by Operator Requirements

• Net Virt’n: map abstract model to global view

- Driven by Specification Abstraction

• NOS: map global view to physical switches

- API: driven by Distributed State Abstraction

- Switch/fabric interface: driven by Forwarding Abstraction

48

We Have Achieved Modularity!

• Modularity enables independent innovation

- Gives rise to a thriving ecosystem

• Innovation is the true value proposition of SDN

- SDN doesn’t allow you to do the impossible

- It just allows you to do the possible much more easily

• This is why SDN is the future of networking…

49

SDN Architecture Overview (ONF v1.0)

