
Hyperconverged Infrastructure

• Internet as a global system

• Seamless integration of compute, network
and storage

• Performance vs. Layering

• New technologies

• New Applications

CSci8211: Introduction 1

Subjects To Be Covered

• Software Defined Network

• Software Defined Storage

• Solid State Drives

• Non-Volatile Memory

• Virtual Machine + Docker Container

• Data Deduplication

• Key-Value Store

CSci8211: Introduction 2

A Global System: Future Internet
• Data can be stored and accessed from any

where on the earth (as long as they are
parts of Internet)

• Internet consists of compute, storage and
networking components

• Services are offered via Internet (where is
end-to-end?)

• A new thinking and new design of Internet
are required

• Most of Internet components become
white-boxes

CSci8211: Introduction 3

CSci8211: Introduction 4

Review of Old Internet
Architecture

 Internet in a Nutshell:
 Internet service model

 Fundamental issues in network design

 Basic Internet Architecture
 “Hour-glass” architecture

 IP datagram formats; UDP/TCP segment formats

 IP addressing and routing protocols

 Internet Philosophy (and Design Principles)
 “end-to-end” argument

CSci8211: Introduction 5

What is a Network/Internet?

Compare Internet with

Postal Service and Telephone System

 Various Key Pieces and Their Functions

 Services Provided

 How the pieces work together to provide
services

CSci8211: Introduction 6

Service Perspective
Basic Services Provided
 Postal: deliver mail/package from people to people

 First class, express mail, bulk rate, certified, registered, …

 Telephone: connect people for talking
 You may get a busy dial tone
 Once connected, consistently good quality, unless using cell phones

 Internet: transfer information between
people/machines
 Reliable connection-oriented or unreliably connectionless services!
 You never get a busy dial tone, but things can be very slow!
 You can’t ask for express delivery (not at the moment at least!)

CSci8211: Introduction 7

IP Service Model
• Packet-switching data network

– shared infrastructure, statistical multiplexing!
– each packet carries source and destination
– “logical” network of networks, “overlaid” on top of various

“physical networks, running TCP/IP protocol suite
• Best-effort delivery (unreliable service)

– connectionless (“packet” or datagram-based)
– packets may be lost, duplicated, delivered out of order
– packets can be delayed for a long time
– ……

• Global reachability
– global addressing (public IPv4 and IPv6 addresses)

• but firewalls, NATs, …
– BGP network reachability announcement (next class!)

CSci8211: Introduction 8

Fundamental Issues in Networking
• Naming/Addressing

– How to find name/address of the party (or parties) you
would like to communicate with

– Address: byte-string that identifies a node
– Types of addresses

• Unicast: node-specific
• Broadcast: all nodes in the network
• Multicast: some subset of nodes in the network

• Routing/Forwarding: process of
determining how to send packets towards
the destination based on its address
– Finding out neighbors, building routing tables

CSci8211: Introduction 9

Fundamental Problems in Networking …

What can go wrong?
• Bit-level errors: due to electrical interferences

• Packet-level errors: packet loss due to buffer
overflow/congestion

• Out of order delivery: packets may takes
different paths

• Link/node failures: cable is cut or system crash

• Human configuration/operational errors

• Malicious attacks!

CSci8211: Introduction 10

Internet Architecture

• packet-switched
datagram network

• IP is the glue (network
layer overlay)

• IP hourglass architecture
– all hosts and routers run IP

• stateless architecture
– no per flow state inside network

IP

TCP UDP

ATM

Satellite

Ethernet

IP hourglass

CSci8211: Introduction 11

Internet Protocol “Zoo”
a
p
p
li

ca
ti

o

n

SMTP

Telnet
NFS/Sun RPC

FTP DNSHTTP

RealAudio RealVideo

CSci8211: Introduction 12

The Internet Network layer

routing

table

Routing protocols

•path selection

•RIP, OSPF, BGP

IP protocol

•addressing conventions

•packet handling conventions

ICMP protocol

•error reporting

•router “signaling”

Transport layer: TCP, UDP

Data Link layer (Ethernet, WiFi, PPP, …)

Physical Layer (SONET, …)

Network

layer

CSci8211: Introduction 13

IP Datagram Format

ver length

32 bits

data
(variable length,
typically a TCP

or UDP segment)

16-bit identifier

Internet
checksum

time to
live

32 bit source IP address

IP protocol version
number

header length
(bytes)

max number
remaining hops

(decremented at
each router)

for
fragmentation/
reassembly

total datagram
length (bytes)

upper layer protocol
to deliver payload to

head.
len

type of
service

“type” of data flgs
fragment

offset
upper
layer

32 bit destination IP address

Options (if any) E.g. timestamp,
record route
taken, specify
list of routers
to visit.

CSci8211: Introduction 14

IP Addresses & Datagram Forwarding
• IPv4 Address

– 32 bits
– two-parts: network prefix and host parts
– E.g., 128.101.33.101

network prefix: 128.101.0.0/16

• Forwarding and IP address

– forwarding based on network prefix
• Delivers packet to the appropriate network

• Once on destination network, direct delivery using host id

• IP destination-based next-hop forwarding paradigm
– Each host/router has IP forwarding table

• Entries like <network prefix, next-hop, output interface>

CSci8211: Introduction 15

Datagram Networks: the Internet model

• routers: no state about end-to-end connections
– no network-level concept of “connection”

• packets forwarded using destination host address
– packets between same source-dest pair may take

different paths, when intermediate routes change!

application
transport
network
data link
physical

application
transport
network
data link
physical

1. Send data 2. Receive data

CSci8211: Introduction 16

Routing in the Internet

• The Global Internet consists of Autonomous Systems
(AS) interconnected with each other:
– Stub AS: small corporation: one connection to other AS’s

– Multihomed AS: large corporation (no transit): multiple
connections to other AS’s

– Transit AS: provider, hooking many AS’s together

• Two-level routing:
– Intra-AS: administrator responsible for choice of

routing algorithm within network

– Inter-AS: unique standard for inter-AS routing: BGP

CSci8211: Introduction 17

Internet Architecture

LANs

International

lines

ISP ISPcompany university

national

network

regional

network

NAP

Internic

on-line

services

company
access via

modem

Internet: “networks of networks”!

CSci8211: Introduction 18

Internet AS Hierarchy

Intra-AS border (exterior gateway) routers

Inter-AS interior (gateway) routers

CSci8211: Introduction 19

Intra-AS vs. Inter-AS Routing

Host
h2

a

b

b

a
aC

A

B
d c

A.a

A.c

C.b
B.a

c

b

Host
h1

Intra-AS routing
within AS A

Inter-AS
routing

between
A and B

Intra-AS routing
within AS B

CSci8211: Introduction 20

Inter-AS Routing in the Internet: BGP

Figure 4.5.2-new2: BGP use for inter-domain routing

AS2
(OSPF

intra-AS

 routing)

AS1
(RIP intra-AS

 routing) BGP

 AS3
(OSPF intra-AS

 routing)

BGP

R1 R2

R3

R4

R5

CSci8211: Introduction 21

Internet Transport Protocols

TCP service:
• connection-oriented: setup

required between client,
server

• reliable transport between
sender and receiver

• flow control: sender won’t
overwhelm receiver

• congestion control: throttle
sender when network
overloaded

UDP service:
• unreliable data transfer

between sender and
receiver

• does not provide:
connection setup,
reliability, flow control,
congestion control

Both provide logical communication between app processes
running on different hosts!

CSci8211: Introduction 22

Multiplexing/Demultiplexing

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2P3 P4P1

host 1 host 2 host 3

= process= API (“socket”)

delivering received segments
to correct application process

Demultiplexing at rcv host:
gathering data from multiple
app processes, enveloping data
with header (later used for
demultiplexing)

Multiplexing at send host:

CSci8211: Introduction 23

UDP: User Datagram Protocol [RFC 768]

• “no frills,” “bare bones”
Internet transport
protocol

• “best effort” service, UDP
segments may be:
– lost

– delivered out of order to
app

• connectionless:
– no handshaking between

UDP sender, receiver

– each UDP segment handled
independently of others

Why is there a UDP?
• no connection

establishment (which can
add delay)

• simple: no connection state
at sender, receiver

• small segment header

• no congestion control: UDP
can blast away as fast as
desired

CSci8211: Introduction 24

UDP (cont’d)

• often used for
streaming multimedia
apps
– loss tolerant
– rate sensitive

• other UDP uses
– DNS
– SNMP

• reliable transfer over
UDP: add reliability at
application layer
– application-specific

error recovery!

source port # dest port #

32 bits

Application
data

(message)

UDP segment format

length checksum
Length, in

bytes of UDP
segment,
including

header

CSci8211: Introduction 25

TCP: Overview
• full duplex data:

– bi-directional data flow in
same connection

– MSS: maximum segment
size

• connection-oriented:
– handshaking (exchange of

control msgs) init’s sender,
receiver state before data
exchange

• flow controlled:
– sender will not overwhelm

receiver

• point-to-point:
– one sender, one receiver

• reliable, in-order byte
steam:
– no “message boundaries”

• pipelined:
– TCP congestion and flow control

set window size

• send & receive buffers

socket

door

TCP

send buffer

TCP

receive buffer

socket

door

segment

application

writes data
application

reads data

CSci8211: Introduction 26

source port # dest port #

32 bits

application
data

(variable length)

sequence number

acknowledgement number

rcvr window size

ptr urgent datachecksum

FSRPAU
head
len

not
used

Options (variable length)

TCP Segment Structure

URG: urgent data
(generally not used)

ACK: ACK #
valid

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

PSH: push data now
(generally not used)

CSci8211: Introduction 27

Domain Name System (DNS)

• Properties of DNS
– Hierarchical name space divided into zones

– Translation of names to/from IP addresses

– Distributed over a collection of DNS servers

• Client application
– Extract server name (e.g., from the URL)

– Invoke system call to trigger DNS resolver code

– E.g., gethostbyname() on “www.foo.com”

• Server application
– Extract client IP address from socket

– Optionally invoke system call to translate into name

– E.g., gethostbyaddr() on “12.34.158.5”

CSci8211: Introduction 28

Domain Name System

com edu org ac uk zw arpa

unnamed root

umn

ece cs

foo afer

ac

cam

usr

in-
addr

12

34

56

generic domains country domains

afer.cs.umn.edu usr.cam.ac.uk

12.34.56.0/24

CSci8211: Introduction 29

DNS Resolver and Local DNS Server

Application

DNS resolver

Local DNS

server

1 10

DNS cache

DNS query

2

DNS response 9

Root server

3

4

Top-level

domain server

5

6

Second-level

domain server

7

8

Caching based on a time-to-live (TTL) assigned by the DNS server

responsible for the host name to reduce latency in DNS translation.

CSci8211: Introduction 30

Application-Layer Protocols
• Messages exchanged between applications

– Syntax and semantics of the messages between hosts

– Tailored to the specific application (e.g., Web, e-mail)

– Messages transferred over transport connection (e.g., TCP)

• Popular application-layer protocols
– Telnet, FTP, SMTP, NNTP, HTTP, …

Client Server

GET /index.html HTTP/1.1

HTTP/1.1 200 OK

CSci8211: Introduction 31

Example: Many Steps in Web Download

Browser
cache

DNS
resolution

TCP
open

1st byte
response

Last byte
response

Sources of variability of delay

• Browser cache hit/miss, need for cache revalidation

• DNS cache hit/miss, multiple DNS servers, errors

• Packet loss, high RTT, server accept queue

• RTT, busy server, CPU overhead (e.g., CGI script)

• Response size, receive buffer size, congestion

• … downloading embedded image(s) on the page

CSci8211: Introduction 32

IP Suite: End Hosts vs. Routers

HTTP

TCP

IP

Ethernet
interface

HTTP

TCP

IP

Ethernet
interface

IP IP

Ethernet
interface

Ethernet
interface

SONET
interface

SONET
interface

host host

router router

HTTP message

TCP segment

IP packet IP packetIP packet

This course focuses on the routers…

CSci8211: Introduction 33

Happy Routers Make Happy Packets

• Routers forward packets
– Forward incoming packet to outgoing link
– Store packets in queues
– Drop packets when necessary

• Routers compute paths
– Routers run routing protocols
– Routers compute forwarding tables

• A famous quotation from RFC 791
– “A name indicates what we seek.

An address indicates where it is.
A route indicates how we get there.”

-- Jon Postel

CSci8211: Introduction 34

Internet Philosophy and
Design Principles

Architecture: the big picture

Goals:

• identify, study principles that can guide network
architecture

• “bigger” issues than specific protocols or
implementation tricks

• synthesis: the really big picture

CSci8211: Introduction 35

Key questions

• How to decompose the complex system
functionality into protocol layers?

• Which functions placed where in network,
at which layers?

• Can a function be placed at multiple levels ?

Answer these questions in context of
Internet, telephone network

CSci8211: Introduction 36

Common View of the Telco Network

brick (dumb)

brain (smart)

lock (you can’t get in)

CSci8211: Introduction 37

Common View of the IP Network

CSci8211: Introduction 38

Readings: Saltzer84

• End-to-end argument
– Better to implement functions close to application

– … except when performance requires otherwise

• Why?
– …

• What should be the “end” for network
“functionalities”, e.g., routing?
– Router?

– End host?

– Enterprise edge?

– Autonomous System?

CSci8211: Introduction 39

Internet End-to-End Argument
According to [Saltzer84]:
• “…functions placed at the lower levels may be

redundant or of little value when compared to the cost
of providing them at the lower level…”

• “…sometimes an incomplete version of the function
provided by the communication system (lower levels)
may be useful as a performance enhancement…”

• This leads to a philosophy diametrically opposite to
the telephone world of dumb end-systems (the
telephone) and intelligent networks.

CSci8211: Introduction 40

Example: Reliable File Transfer

• Solution 1: make each step reliable, and
then concatenate them

OS

Appl.

OS

Appl.

Host A Host B

OK

• Solution 2: each step unreliable: end-to-
end check and retry

CSci8211: Introduction 41

Discussion
• Solution 1 not good enough!

– what happens if the sender or/and receiver misbehave?

• so receiver has to do check anyway!

• Thus, full functionality can be entirely
implemented at application layer; no need
for reliability from lower layers

CSci8211: Introduction 42

Discussion
Q: Is there any reason to implement

reliability at lower layers?

A: Yes, but only to improve performance

• Example:
– assume high error rate in network

– reliable communication service at data link layer might
help (why)?

– fast detection /recovery of errors

CSci8211: Introduction 43

E2E Argument: Interpretations
• One interpretation:

– A function can only be completely and correctly implemented
with the knowledge and help of the applications standing at
the communication endpoints

• Another: (more precise…)
– a system (or subsystem level) should consider only functions

that can be completely and correctly implemented within it.

• Alternative interpretation: (also correct …)
– Think twice before implementing a functionality that you

believe that is useful to an application at a lower layer
– If the application can implement a functionality correctly,

implement it a lower layer only as a performance enhancement

CSci8211: Introduction 44

Internet & End-to-End Argument

• network layer provides one simple service: best
effort datagram (packet) delivery

• transport layer at network edge (TCP) provides
end-end error control
– performance enhancement used by many applications

(which could provide their own error control)

• all other functionalities …
– all application layer functionalities

– network services: DNS

implemented at application level

CSci8211: Introduction 45

Internet & End-to-End Argument
Discussion: congestion control, “error” control, flow

control: why at transport, rather than link or
application layers?

• Claim: common functions should migrate down the
stack
– Everyone shares same implementation: no need to redo it

(reduces bugs, less work, etc…)

– Knowing everyone is doing the same thing, can help

• congestion control too important to leave up to
application/user: true but hard to police
– TCP is “outside” the network; compliance is “optional”

– We do this for fairness (but realize that people could cheat)

• Why error control, flow control in TCP, not (just) in
app

CSci8211: Introduction 46

Trade-offs

• application has more information about the data
and semantics of required service (e.g., can check
only at the end of each data unit)

• lower layer has more information about
constraints in data transmission (e.g., packet size,
error rate)

• Note: these trade-offs are a direct result of
layering!

CSci8211: Introduction 47

End-to-End Argument: Critical Issues

• end-to-end principle emphasizes:
– function placement
– correctness, completeness
– overall system costs

• Philosophy: if application can do it, don’t do it at a
lower layer -- application best knows what it needs
– add functionality in lower layers iff (1) used by and

improves performances of many applications, (2) does not
hurt other applications

• allows cost-performance tradeoff

CSci8211: Introduction 48

End-to-End Argument: Discussion

• end-end argument emphasizes correctness &
completeness, but not
– complexity: is complexity at edges result in a

“simpler” architecture?

– evolvability, ease of introduction of new
functionality: ability to evolve because
easier/cheaper to add new edge applications than
change routers?

– technology penetration: simple network layer
makes it “easier” for IP to spread everywhere

CSci8211: Introduction 49

Summary: End-to-End Arguments

• If the application can do it, don’t do it at a
lower layer -- anyway the application knows
the best what it needs
– add functionality in lower layers iff it is (1) used and

improves performances of a large number of applications,
and (2) does not hurt other applications

• Success story: Internet
– But …

CSci8211: Introduction 50

Next Week

• Read the required readings:
– Internet design philosophy: Clark88,

• also [Clark:Tussle] and [CerfKahn] if you have time

– Cisco BGP Tutorial and [Huston99]

– no need to submit reviews, but use your brain!

• Questions for you to think about:
– What are the “architectural” advantages of Internet,

and also its limitations?

– If you can redesign it, how would you do it?

