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ABSTRACT

Database benchmarks are an important tool for database re-
searchers and practitioners that ease the process of making
informed comparisons between different database hardware,
software and configurations. Large scale web services such
as social networks are a major and growing database appli-
cation area, but currently there are few benchmarks that
accurately model web service workloads.
In this paper we present a new synthetic benchmark called

LinkBench. LinkBench is based on traces from production
databases that store “social graph” data at Facebook, a ma-
jor social network. We characterize the data and query
workload in many dimensions, and use the insights gained to
construct a realistic synthetic benchmark. LinkBench pro-
vides a realistic and challenging test for persistent storage
of social and web service data, filling a gap in the available
tools for researchers, developers and administrators.

Categories and Subject Descriptors

H.2 [Information Systems]: Database Management

General Terms

Experimentation, Measurement, Performance

Keywords

Social networks; database workload analysis; database bench-
marks; MySQL; HBase

1. INTRODUCTION
Much of the data powering Facebook is represented as

a social graph, comprised of people, pages, groups, user-
generated content and other entities interconnected by edges
representing relationships. Such graph data models have be-
come popular as sophisticated social web services proliferate.
At Facebook, persistent storage for the social graph is

provided by sharded MySQL[1] databases. Facebook’s mem-
cached and TAO cache clusters [2, 3] provide a caching layer
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that can serve most reads, so the MySQL layer’s production
workload is comprised of cache-miss reads and all writes.

The Database Enginering team at Facebook has a growing
need for benchmarks that reflect this database workload to
assist with development, testing, and evaluation of alterna-
tive database technologies. Facebook’s software architecture
abstracts storage backends for social graph data, allowing
alternative database systems to be used.

Given the scale of Facebook’s infrastructure, any changes
in technology require careful evaluation and testing. For
example, in the past we performed a thorough evaluation
of HBase [4] as an alternative social graph storage back-
end. Facebook already uses HBase for major applications
including its messaging backend [5]. To accurately compare
performance of MySQL and HBase, we mirrored part of the
production workload on“shadow”clusters running our tuned
and enhanced versions of MySQL and HBase. Contrary to
expectation, MySQL slightly outperformed HBase in latency
and throughput while using a fraction of the CPU and I/O
capacity. Further experiment details are in Appendix A

This benchmark effort was time-consuming, which mo-
tivated a more streamlined approach to database bench-
marking for the Facebook MySQL workload. Assessing new
database systems will be crucial in the near future due to
hardware trends such as solid state storage and increasing
core counts. These new technologies could allow impres-
sive performance gains, but systems well-suited to the pre-
vious bottleneck of rotating disks cannot always exploit the
I/O capacity of solid state drives or the processing power of
many-core. Significant efforts are underway in industry and
academia to better exploit this new generation of hardware,
including key-value stores such as FlashStore [6], SILT [7],
embedded databases such as WiredTiger [8] and new storage
engines for relational databases such as TokuDB [9].

Many of these developments are promising, as are ongo-
ing efforts to improve and adapt current technologies such as
MySQL/InnoDB.We intend to conduct ongoing benchmark-
ing on new and existing systems to guide decisions about the
future of social graph storage at Facebook.

In aid of ongoing benchmarking, we have constructed a
synthetic benchmark that aims to predict the performance
of a database when used for persistent storage of Facebook’s
production data. We believe the benchmark will be of inter-
est to the broader database community since, in recent years,
large-scale social applications have become a major applica-
tion area. Our workload can serve as an exemplar of such
applications, many of which have similar graph-structured
data and data access patterns. A synthetic benchmark has



advantages in comparison to alternative approaches, such
as capturing and replaying traces. We can share the bench-
mark with the broader research community without any risk
of compromising users’ privacy. It also allows the benchmark
to be parameterized, allowing the simulated data and work-
load to be varied to test systems of different scales and to
explore different scenarios and workloads.
The contributions of this paper are:

• A detailed characterization of a large-scale social graph
workload using traces collected from production databases.

• LinkBench, a configurable open-source database bench-
mark1 that is closely based on this characterization.

Together we hope that these two contributions can provide
the knowledge and tools necessary to enable realistic bench-
marks of persistent storage for large-scale web services.

2. RELATED WORK
Previous authors [10, 11] have made the case for application-

specific benchmarking where a benchmark is derived from
application data and traces. Tay [11] highlights the chal-
lenges in scaling up or down complex data sets such as social
graphs while retaining important correlations in the data.
Standard database benchmarks have different character-

istics from the Facebook MySQL workload. Transactional
benchmarks such as TPC-C [12] are typically based on busi-
ness transaction-processing workloads and extensively exer-
cise the transaction handling properties required to main-
tain ACID. Analytic benchmarks such as TPC-H [13] fo-
cus on complex queries that involve large table scans, joins
and aggregation. The Facebook MySQL workload places
different demands on database systems from either type of
benchmark and could be served by database systems with-
out full ACID or SQL support. Queries are fairly simple
and short-lived with no full table scans or joins. Similar-
aly, some ACID properties are needed, but transactions are
simple and short-lived.
Existing graph [14, 15] and object database benchmarks [16]

operate on graph-structured data, but emphasize multi-hop
traversals and complex graph analysis, in contrast to the
simpler single-hop queries in our workload.
The Yahoo Cloud Services Benchmark [17] is a bench-

mark designed to measure performance of different database
systems, particularly distributed “cloud” database systems.
The Facebook workload has similarities to the YSCB bench-
mark, but the data, supported operations, and workload mix
are different. YCSB’s data model is not graph-structured,
rather using a simpler tabular key-value data model. The
variety of queries in YCSB comprises point reads and writes
and range scans, while our workload uses distinct node and
edge operations and also edge count operations. The richer
variety of operations can require additional database fea-
tures such as secondary indices and multi-row atomic up-
dates to implement efficiently. LinkBench’s workload and
data model is also grounded directly in measurements from
production systems to increase our confidence in the rele-
vance of the benchmark. Additionally, LinkBench aims to
benchmark the persistent storage layer, because row-level
caching is external to the database. This focus simplifies
measuring the implication of design choices such as disk

1http://github.com/facebook/linkbench

storage layout, without confounding factors that arise from
varying implementations of caching and replication in dis-
tributed databases.

BG [18] is a recently developed benchmark that simu-
lates users of a social network. BG’s approach differs from
LinkBench: it is based on simulation of individual, stateful,
users who carry out various social networking actions, while
LinkBench uses a (mostly) stateless parameterized workload
generator. BG is based on an artificial (but plausible) data
model and workload, while LinkBench’s parameters are de-
rived from the production database workload at Facebook.
BG emulates the entire storage stack, including in-memory
caches, while LinkBench aims to benchmark the persistant
storage layer only. The different benchmark designs reflect
these different goals: simulating stateful users adds tempo-
ral and spatial locality, which is a dominant factor in the
pre-cache workload, but less significant post-cache.

3. WORKLOAD CHARACTERIZATION
This section presents a characterization of Facebook’s so-

cial graph workload, identifying key characteristics that we
will replicate in a synthetic benchmark.

3.1 Social Graph Data Model

id int64 unique identifier
type int32 type of object
version int64 tracks version of object
update time int32 last modification

(UNIX timestamp)
data text data payload

(a) Object (graph node). id is unique key.

id1, id2 int64 IDs of edge’s endpoints
atype int64 type of the association
visibility int8 visibility mode of the edge
timestamp int32 a client-provided sort key
data varchar small additional data payload

(b) Association (graph edge). (id1, atype, id2) is unique key.

Table 1: Database schema for social graph storage.

The social graph at Facebook comprises many objects, the
nodes in the graph, and associations, directed edges in the
graph. There are many different types of objects and asso-
ciations. Examples of entities represented as objects include
users, status updates, photo albums, or photos/video meta-
data: typically entities which have some associated data.
Associations are a lightweight way to represent relationships
between objects, for example if a user posted a photo, a user
liked a photo or if a user is friends with another user.

Table 1 shows the schema used to represent objects and
associations. The data fields are stored as a binary string. A
system at a higher level in the software stack supports richer
data types with per-object-type schemas which can then be
serialized into the data field. The version and update time

fields of the objects are updated with each change to the ob-
ject’s data, with the version incremented and update time
set to the current time. The timestamp field of an associa-
tion is a general-purpose user-defined sort key (often a true
timestamp), where high values are retrieved first. The visi-

bility field allows data to be hidden for use cases that require
data to be retained, for example a user temporarily disabling
their account. Other use cases, such as a user deleting their



post, will result in database-level deletes. Only visible asso-
ciations are included in any query results (including counts).
This graph schema is the foundation upon which many ser-
vices are built: for example, rules about privacy of graph
nodes and edges or services for managing the life-cycle of
data can be implemented in higher-level services.

3.2 Sharding and Replication
The entire Facebook graph is far too large to fit on a sin-

gle server, so must be split into many shards. The nodes
(objects) in the graph are allocated to shards based on ID,
with a function mapping the ID to a shard. Associations
(edges) are assigned to shards by applying the same map-
ping to ID1, meaning that all out-edges for a node are in the
same shard. Client applications have some control over the
location of newly created objects. For example, a new ob-
ject could be colocated with a related object (yielding some
performance benefit from locality) or assigned to a random
shard. The number of shards is chosen so that there are
many shards per database instance, allowing rebalancing if
necessary.
Each database instance has multiple replicas, with one

master and multiple slaves. Replicas are geographically dis-
tributed, with reads handled from local replicas, which re-
duces latency and inter-datacenter traffic. Maintaining mul-
tiple replicas also allows for manual failover in the event
of node or datacenter outages. All writes are applied syn-
chronously at the master database, and replicated to slaves
asynchronously (but under normal circumstances, quickly).
In the current MySQL/InnoDB system, the data storage
layer supports ACID, so the master MySQL instance has
a fully consistent snapshot at all times. The overall sys-
tem therefore provides timeline consistency [19], which is
stronger than the eventual consistency supported by some
other systems.

3.3 Structure of the Social Graph
One component of a benchmark is a data generator that

can produce synthetic data with similar characteristics to
real data. To understand the salient characteristics of our
real data, such as graph structure and typical record size,
we looked in detail at the data in a single MySQL instance.
Due to some non-uniformity in the data between different

shards, the numbers and charts presented in this section do
not cover the entire data set, but we expect that they are
representative.

3.3.1 Object and Association Types

Figure 1 shows the breakdown of graph data by object
and association type. The results indicate that the social
graph have evolved to comprise a diverse array of data types,
representing not only connections between users, but a web
of many objects including pages, posts, comments connected
by various edge types, each having some particular meaning.
The variety of data size and counts, indicates that, for the
purposes of benchmarking, there may be significant non-
uniformity between types.

3.3.2 Payload Data

The mean payload per object is 87.6 bytes, while the av-
erage payload per association is much smaller at 11.3 bytes.
49% of associations have no payload: their purpose is purely
to indicate a connection, rather than to carry additional
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(a) Top 25 object types ranked by count
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(b) Top 100 association types ranked by count

Figure 1: Distribution of social graph nodes (objects) and
edges (associations) among data types, showing total counts
(light blue) and total payload data size (dark red) in a single
MySQL instance. Some types are extremely common, with
many instances per user, yet the “tail” of uncommon types
comprises a large portion of the entire social graph. The
rightmost category is Other.

Compression ratio
Objects in database 61.3%
Object insert queries 46.0%
Object update queries 67.2%
Associations in database 30.6%
Association insert queries 30.3%
Association update queries 57.5%

Table 2: Compressibility of object payload data from dif-
ferent sources. Payload data from a random sample of rows
was concatenated into a single file separated by newlines and
compressed using bzip2.

data. Figure 2 shows the overall distributions of data size
for objects and associations. The distributions are similar
to log-normal distributions, aside from the significant num-
ber of objects and associations with no payload. Further
analysis also found this distribution to exist at the level of
individual data types.

Payload data uses a mix of formats, including text-based
and binary formats. Large payloads are compressed above
the database tier. Compressibility of this data can have sig-
nificant implications for disk, I/O, memory and CPU usage
if the database system compresses data. This applies to our
use case, where we rely on page-level compression of MySQL
InnoDB tables to improve storage efficiency.

Compressibility was estimated by sampling data from sev-
eral sources and compressing with bzip2, an effective but
slow compression algorithm. Results are shown in Table 2.
Compressibility varies between sources, but 60% and 30%
for object and association payload data respectively are rep-
resentative compression ratios.

3.3.3 Graph Structure

Understanding certain properties of structure of the social
graph for generation of realistic benchmark data.

The outdegree distribution for each object is one impor-
tant property. Every object has at least one out-edge, how-
ever there are also out-edges for node IDs that do not corre-
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(a) Object payload bytes distribution
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(b) Association payload bytes distribution

Figure 2: Payload size distributions. Both follow roughly
log-normal distributions, aside from an additional peak at 0
bytes. In both cases payload sizes cluster within an order of
magnitude around different modes. Histogram buckets are
labeled with the lower bound.
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Figure 3: Distribution of node outdegree (logarithmic scale)

spond to objects: some data types are allocated identifiers
but are not represented as objects. Figure 3 shows the out-
degree distribution. We see that the trend is consistent with
a pareto distribution, but with a bulge showing more nodes
with outdegree between 100 and 100, 000 than a pareto dis-
tribution.
Previous analysis of online social networks [20, 21] has

reported similar heavy-tailed power-law distributions for so-
cial networks comprised solely of people and relationships
between people. Our results show that a power-law distri-
bution still occurs with the additional variety of nodes and
edges of the full Facebook social graph.
Further higher-order properties of the social graph struc-

ture could be examined, such as clustering coefficient [22]
or community structure [23]. However, for the purpose of
modeling our database workload, we believe that higher-
order graph structure in communities or correlations be-
tween properties of neighboring nodes will have only a small
effect on database performance. For the operations in our
workload, locality of access for a given ID and the average
result size for range scans are the main factors influencing
performance of each operation. There are certainly patterns
of temporal and spatial locality in our social network work-
load as users navigate the social graph. The amount of lo-
cality at the database layer, however, is likely to be small
and unpredictable because aggressive row-level caching be-

Graph Operation Result # Queries % Queries

obj get(ot, id) object 45.3M 12.9
obj insert(ot, version,
time, data)

id 9.0M 2.6

obj delete(ot, id) - 3.5M 1.0
obj update(ot, id,
version, time, data)

- 25.8M 7.4

assoc count(at, id) count 17.1M 4.9
assoc range(at, id1,
max time, limit)

assocs 177.7M 50.7

assoc multiget(at, id1,
id2 list)

assocs 1.8M 0.5

assoc insert(at, id1, id2,
vis, time, version, data)

- 31.5M 9.0

assoc delete(atype, id1,
id2)

- 10.5M 3.0

assoc update(atype, id1,
id2, vis, time, version,
data)

- 28.1M 8.0

Table 3: The set of social graph operations received by
database instance over a six day period. Operation param-
eters and return values are shown, ot stands for object type
and at stands for association type. Other parameters corre-
spond to fields described in Section 3.1.

fore the database absorbs a great deal of locality. Since we
will not model this particular source of locality, a generative
model that neglects higher order graph structure is sufficient
to evaluate database performance.

3.4 Operation Mix
The set of operations used by the web front end and other

services to access the social graph include standard insert,
update, and delete operations to modify data, along with
variations on key lookup, range, and count queries. The set
of operations covers most of the common access patterns re-
quired to serve data to users and is deliberately kept simple,
to allow easier caching and system implementation. There
are features, such as complex search queries, that cannot be
efficiently implemented using this interface and are imple-
mented as separate specialized services.

The queries issued to databases are classified into a few
basic operations, shown in Table 3. These include:

• Point reads for associations and objects identified by
primary key, with the option of batching multiple as-
sociation reads batched into a single query.

• Simple create, delete, and update operations for asso-
ciations and objects identified by primary key.

• Association range queries for a given ID, type, and
timestamp range, ordered from latest to oldest. For
example, a range query might obtain be used to ob-
tain edges leading to the most recent comments on a
post. A row limit, N , must be specified. The most
recent N associations before the provided timestamp
are returned.

• Association count queries, for the number of visible
out-edges of a given type from a given node. For ex-
ample, a count query might count a user’s friends.

To understand the database workload, we collected a trace
of queries issued by TAO, the distributed in-memory caching
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Figure 4: Temporal variation in operations per second in
workload over six days, normalized to the average total op-
erations per second over the period. Top: object operations.
Bottom: association operations.

Row limit % of range queries
1 0.86%
1000 0.39%
6000 7.44%
10000 91.54%
Other 0.07%

(a) Row limit for range queries
observed in read workload

% of range
# rows queries
0 26.6%
1 45.4%
2 5.4%
3-5 6.4%
6-10 4.2%
11-20 4.2%
21-50 3.5%
51-100 1.6%
101-500 2.0%
501-1000 0.4%
1001-10000 0.3%
>10000 0.01%

(b) Range scan row count distri-
bution

% of assoc.
# keys get queries
1 64.6%
2 8.8%
3 3.1%
4 1.9%
5 1.6%
6 1.4%
7 10.6%
8 0.8%
9 7.1%
10 0.2%

(c) Lookup key count for multi-
get queries

Table 4: Rows read for social graph edge read queries

system through which Facebook’s production web infras-
tructure accesses the social graph. We logged all social graph
database queries for the same MySQL instance for a six day
period. This section presents an analysis of the trace.
Table 3 shows a 2.19 : 1 ratio of read to write queries and

a 3.19 : 1 ratio of association of object queries, with asso-
ciation range queries alone making up half of the workload.
System load varies over time (see Figure 4) with a high base
level and major and minor peaks every day.
Although the workload was fairly balanced between read

and write operations, we saw 40.8 rows read per row writ-
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(b) Object writes

Figure 5: Distribution of accesses for different kinds of oper-
ations based on ID of object. Pareto distributions are shown
for comparison. Distributions are also shown excluding the
two top types for reads and writes, which exhibited unusual
behavior.

ten, since write operations only affect a single row but many
read operations return multiple rows. The workload is sur-
prisingly read heavy given that all writes hit the databases,
but cache clusters serve most reads. Most range scans had a
large upper limit on the result size (Table 4a). The large lim-
its are due to aggressive caching that prefetches and caches
ranges of associations. Analysis of read logs showed that the
mean range scan result, ignoring limits, was 21.9 rows. Ta-
ble 4b shows the full distribution. Range limits only slightly
reduce this: uniform limits of of 10000 or 6000 would re-
sult in 20.9 or 20.1 rows respectively. The average number
of keys per association multiget query was 2.62. Table 4b
shows the full distribution.

Most range queries were for the n most recent items:
0.96% of range scan queries specified a maximum timestamp,
typically because they were trying to fetch older history that
was not retrieved in the first query.

3.5 Access Patterns and Distributions
In database deployments, some “hot” data is far more fre-

quently accessed than other data, while there is often also
“cold” data that is infrequently accessed, if at all. Stated
differently, some rows of data are orders of magnitude more
likely to be read or written than others. When construct-
ing a synthetic benchmark, it is important to have realistic
data access patterns because the interaction between pat-
terns of hot and cold rows and a database system’s caches
is an important factor in overall performance.

In order to do an initial characterization of the distribu-
tion of “hotness” for data, we examined the distribution of
operations between different node IDs. We aggregated all
different varieties of reads and writes. Different categories
of operation show similar skewed access distributions, where
the majority of items are rarely accessed, but a small minor-
ity are read and written frequently. These patterns occur
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(b) association writes (update,
insert, and delete queries)

Figure 6: Distribution of accesses for different kinds of op-
erations based on ID1/type of association
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(b) Edges from objects to user
they were liked by

Figure 7: Distribution of reads for the “like” association
showing that power law behavior is still present for indi-
vidual association types.
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(a) Cold and read-only data by type, showing only 4.78% of objects
were modified and only 8.73% were accessed in six day period.
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(b) Intensity of reads and writes per row of data

Figure 8: Workload metrics for top object types, illustrating
the disparity in data access patterns for different types

even in spite of the extensive caching of data outside of the
database. Figure 5 and Figure 6 show the access distribu-
tions for objects and associations respectively. A power-law
distribution, such as the pareto distribution, looks to be a
reasonable approximation. We examined several of the most
popular association and object types and determined that
the power law distribution remains when looking at individ-
ual data types. E.g. Figure 7 shows the access distribution
for the like association, one of the top association types.
In order to produce a realistic benchmark, we want to

understand what affects frequency of access of graph nodes
and edges so that we can emulate important correlations in
a benchmark. We looked into a number of possibilities to
better inform the design of LinkBench, which we explore in
the next two sections.

3.6 Access Patterns by Data Type
Some of the variation may be explained by different access

patterns for different types. For example, a person’s profile
is probably more frequently accessed than a given post.
Figure 8 illustrates varying access patterns for different

object types, with different types having widely varying ra-
tios of reads to writes. We looked at what fraction of objects
were never accessed, or cold. Overall a large proportion of
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(a) Proportion of association lists (identified by unique ID1, as-
soc type pair), which are accessed or modified. Overall 3.2% of lists
were modified and 7.8% were accessed.
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(b) Relative proportions of different operations per association type,
illustrating the widely different workloads
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(c) The number of operations relative to the total number of associ-
ations of that type

Figure 9: Workload metrics for top association types, illus-
trating the disparity in data access patterns

objects, 91.3%, are cold data that was never accessed dur-
ing the 6 day trace. 95.2% were read-only during that pe-
riod. This is unsurprising since nodes in the social graph,
such as posts and status updates, become less relevant and
less discoverable as they age. Much data is also in practice
read-only: it is rarely, if ever, modified once present. Some
types are far more intensely read and written than other
types, with average read and write intensity varying by two
to three orders of magnitude between types.

Access patterns for associations are more complex, be-
cause of the variety of supported operations, and because
range queries return variable numbers of rows. Figure 9
compares metrics between association types. As with ob-
jects, the workload varies greatly between association types
in composition of queries and frequency of reads and writes.

We looked at what proportion of associations were cold.
Breaking down the associations into lists, identified by a
(id1, assoc type) pair, we saw that 92.2% of these lists were
cold and not the subject of any read or write operations
in 6 day period and 96.6% were not modified. 23.3% of
queried lists were only counted, without any association data
returned. Interestingly, 92.2% of association lists were cold,
but only 74% of association rows were cold. This indicates
a correlation between the length of an association list and
the likelihood of it being accessed.

3.7 Graph Structure and Access Patterns
Another possible explanation for varying access patterns

is graph structure. For example, the “popularity” of a node
in the graph is likely to be related to he number of edges to
or from the node: its indegree or outdegree. For example,
a post that has been shared by many people or a page for
a popular figure with many followers will be frequently ac-
cessed. Objects with high degrees are more “discoverable”
with more paths through the social graph leading to them.
They may also accumulate more new edges, due to processes
such as preferential attachment that can occur in social net-
works[24], where nodes with high degree accumulate even
more edges as a graph evolves over time.



(a) Object reads (b) Object updates

(c) Association read queries (d) Association insert/delete/update queries

Figure 10: Correlation between social graph node’s outdegree and read/write frequency The outdegree is correlated with
operations on edges (associations), but not operations on nodes (objects). Jitter added to show density.

Field % Assoc. Updates
Visibility 12.0%
Timestamp 84.4%
Version 98.4%
Data 46.3%

Table 5: Fields modified by association update operations

To investigate, we took a random sample of 1% of nodes
with outdegree ≥ 1 and compared the outdegree with the
number of queries for that ID in the trace. Figure 10 shows
the results for various classes of queries. There is a correla-
tion between outdegree and association read queries (mostly
range scans), while there is little correlation for node read
queries, possible because simple object retrievals are cached
more effectively than complex association queries. Similar
patterns can be seen for write queries. This indicates that a
realistic benchmark needs to have a query mix that is biased
towards graph nodes with high outdegree.

3.8 Update characterization
The nature of in-place updates may have some impact on

performance of the system, for example causing fragmenta-
tion if data shrinks or forcing additional page allocations.
Updates to objects always update the version, timestamp,

and data fields. Updates to associations often only update
one or two fields, such as the timestamp or the visibility,
as shown in Table 5. Typically the payload data size only
changes by a small amount, illustrated by Figure 11. For
objects, over a third of updates do not change the data size,
while the majority of other updates alter it less than 128
bytes. Associations exhibit a similar pattern. In both cases,
when the data size stays constant it is typically because a
data field, such as a number or other identifier, is modified
such that representation length does not change.

4. BENCHMARK DESIGN
In this section we present the LinkBench database bench-

mark, describing the architecture of the system, the con-
figurable building blocks that allow the benchmark to be
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(a) Object updates
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(b) Association updates

Figure 11: Distribution of payload size change in bytes upon
update operation. Most data updates only change the size
a small amount.

customized, and the process of generating a synthetic social
graph and database workload of graph operations.

The benchmark is designed to test performance of a sin-
gle database instance in isolation. We have a client-server
architecture, shown in Figure 12 with the LinkBench client
implemented in Java driving a graph store. We currently
have implemented a MySQL graph store, but any database
system that meets the requirements in Section 4.1 can be
benchmarked. We describe key decisions made in the design
of the client in Section 4.2.

The LinkBench driver operates in two phases. The first
phase populates the graph store by generating and bulk-
loading a synthetic social graph. The generative model used
is described in Section 4.3 and Section 4.4. In the second
phase the driver benchmarks the graph store with a gener-
ated workload of database queries and collects performance
statistics. Generation of the simulated workload is discussed
in Section 4.5 and the metrics collected are discussed in Sec-
tion 4.6. Both phases have many configurable parameters
that can be used to scale up or down the workload, or to
explore workloads with different characteristics.

4.1 LinkBench Graph Store Implementation
LinkBench is designed so that the same benchmark imple-

mentation can be used for many different database systems.
A database can be used as a LinkBench graph store with an
adapter implementing the operations in Table 3.

To ensure comparability of benchmark results, we impose
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Figure 12: LinkBench architecture, showing the datastore
under benchmark (which could logically be considered a sin-
gle shard of a larger system), a subset of configuration set-
tings, and the internal components of the LinkBench driver.

some constraints on the implementation. The entire social
graph should be stored in persistent storage. Any database
schemas, compression, indices or other configuration or op-
timization should be reported. All writes must be durable,
with data flushed to persistent storage before the operation
completes so that the data can be recovered in the event of a
crash. Any update operations should be atomic and ensure
consistency. For example, in our MySQL benchmark im-
plementation, a separate edge count is updated in the same
atomic transaction as an edge insertion or deletion. Any
weaker ACID properties should be disclosed.

4.2 Benchmark Client Design
In designing the benchmark we kept a balance between

the realism of the workload and the simplicity of the imple-
mentation. We avoid requiring communication between con-
current requesting threads, which makes scaling the bench-
mark client trivial. We also minimize the amount of state
required in the benchmark client: with one exception, no
state is tracked in the benchmark client. In particular, we
avoided any approaches that would have required storing a
significant volume of data about a full multi-terabyte graph
in memory. This means that, in order to generate a work-
load that is influenced with graph structure, we had to rely
on knowledge of how the initial graph was generated. The
statelessness contrasts with real-world clients, where navi-
gation patterns of users induce some spatial locality, with
bursts of activity in sections of the graph. We believe that
the locality effects will be limited and unpredictable due to
the aggressive caching, so we will not sacrifice much realism.

4.3 Workload Generator Building Blocks
LinkBench uses a range of configurable and extensible

building blocks so that the benchmark can be tweaked and
customized. The benchmark configuration file contains many
modifiable parameters, and allows different implementations

of these building blocks for graph creation and workload gen-
eration to be swapped in.

LinkBench has a framework for probability distributions,
which are used in many places in the benchmark to generate
random data. Distributions are implemented as Java classes
and include the uniform distribution, the Zipf distribution,
and the log-normal distribution. Wherever a distribution
is used in LinkBench, the implementation and parameters
can be configured. A distribution provides two functions:
a quantile function that allows, for example, calculation of
outdegree of the graph node with the kth highest outdegree
out of n nodes; and a choose function that selects integers in
a range [1, n] with probability weighted by the distribution.

The weighting works such that the lowest keys are most
popular, meaning that popular database rows would be clus-
tered together if the values are used directly as database row
keys. In real data sets, popular data is scattered through-
put the key space. Other benchmarks shuffle popular data
throughout the key space by permuting each key i within the
range of valid keys [1, n] using a permutation function p(i).
Gray suggests multiplying the index by a prime modulo n

to obtain the new key [25]. YCSB [17] generates keys within
a much larger range then shrinks the range by hashing.

In LinkBench, we want correlated distributions for access
frequency and node outdegree, while generating data in bulk
in primary key order. In order to achieve this the inverse of
the prior permutation, p−1(i), needs to be efficiently com-
putable. Both permutation functions mentioned previously
are difficult to invert, so LinkBench uses a different, invert-
ible, permutation function. It can be given different parame-
ters to alter the permutation, and has low CPU and memory
overhead. If there are n items in the keyspace, we choose
a number k, for example k = 1024. We then fill an array
A with k pseudorandom integers (using a known seed for
reproducibility). If n is divisible by k, then the permutation
is computed as p(i) = ((i+k ·A[i mod k]) mod n), which ro-
tates each set of indices with the same remainder modulo k

in the keyspace. The inverse is easily computable using the
same formula with A[i mod k] negated. For LinkBench, we
generalized the formula for the case where n is not divisible
by k. This method of permuting data can key distribution
sufficiently with limited memory overhead.

LinkBench also has a framework for data generators, which
can fill byte buffers with randomly generated data, useful to
generate payload data for graph nodes and edges that has
similar compressibility to real data. By default, LinkBench
uses themotif data generator, which generates a configurable
mix of random bytes and repeated multi-byte motifs.

4.4 Generative Model for Social Graph
In this section we describe the generative model used to

construct a social graph. Generating random graphs with
structure close to real social networks is challenging and an
active area of research. For the purposes of the benchmark,
we do not need full fidelity to the original graph structure.
Rather, we want a simple, configurable, and fast graph gen-
erator that gives results close to the real social graph in
the right dimensions so that it places similar stresses on the
database. The degree distribution of the generated data
must be realistic, so that similar numbers of records are
scanned by range queries. However, the community struc-
ture of the generated graph (e.g. the probability of two
friends having another mutual friend) is unimportant, as



this does not directly affect the performance of any queries
in the workload.

4.4.1 Graph Size

LinkBench can be run with different graph sizes by spec-
ifying the initial node ID range. For example, if a range of
[1..1, 000, 001] is specified, then 1, 000, 000 nodes and corre-
sponding edges will be bulk loaded. The graph will continue
to expand in the later benchmark phase.
For full-scale benchmarking we use graphs with around 1

billion nodes occupying approximately 1TB using InnoDB
without compression. A social graph of this size can be
generated and loaded by LinkBench in around 12 hours on
a high-end servers with solid state drives thanks to bulk-
loading optimizations such as batch insertions.

4.4.2 Generating Graph Nodes

The simpler part of generating a synthetic social graph
is generating graph nodes (also referred to as objects). We
have simplified the benchmark by only having a single node
type in the graph. The major downside of this is that we
cannot have different types of nodes with different work-
load characteristics. The simplification of the benchmark
implementation is considerable, as without this simplifica-
tion, to select a random node ID of a given type to query
would require the benchmark client to track which parts of
the ID space are of which type. This is challenging and
memory-intensive when new IDs are being allocated dur-
ing the benchmark. This is a good compromise, since node
queries are a small portion of the workload compared to
edge queries and much of the variation in access patterns is
captured by the access distributions used for node queries.
Node payload data is generated using the motif generator

with parameters chosen to get a compression ratio of approx-
imately 60%, similar to the measured compression ratio in
Table 2. The size of the payload is chosen from a configured
probability distribution. We use a log-normal distribution
with a median of 128 bytes.

4.4.3 Generating Graph Edges

Given the varying access patterns for different association
types seen in Section 3.6, we explored the possibility of a
benchmark that incorporated a range of distinct edge types.
However, in the end we decided against attempting to faith-
fully replicate this diversity, mainly because we could not
justify the additional complexity when it was possible to
capture much variation with a homogenous model of edges.
We support a configurable number of association types, but
all use the same data and workload generator.
Graph edges (or associations) are generated concurrently

with graph nodes during bulk loading. We divide the node
ID space into chunks based on the ID of the source node.
The chunks are processed in parallel to speed loading. The
chunks are processed in approximate order of ID and within
each chunk strictly in order of ID. Loading in primary key
order can speeds up loading greatly for many database sys-
tems. As an aside, we have encountered a phenomenon with
MySQL’s InnoDB B-tree-based tables where, after a table
is loaded in primary key order, insertion and deletion can
cause fragmentation over time. This leads to increased stor-
age usage and somewhat degraded performance. Database
benchmarkers should be aware of such phenomena, particu-
larly when examining storage efficiency.

For each node the steps to generate edges are:

1. Choose the outdegree deterministically using a proba-
bility distribution and shuffler. We use the measured
outdegree distribution from Section 3.3.3 directly.

2. Divide the out-edges between the different association
types in a round robin fashion, in such a way that the
ith type always has at least as many edges as the i+1th
type.

3. Select the ID of target nodes for the jth edge of each
type to be source id + j. This makes it simple to de-
termine during later workload generation which graph
edges are likely to exist.

4. Generate payload data for each edge using the motif
data generator with settings tuned to produce data
that can be compressed to approximately 30% of its
original size, in line with Table 2.

4.5 Generating Workload
Our workload generator comprises many threads of exe-

cution, all of which execute a randomized workload gener-
ated with the same parameters but a different random seed.
Statistics are collected by each thread and then aggregated
at the end of the benchmark.

4.5.1 Node Selection

As discussed previously, some of the most important fea-
tures of the benchmark workload are the access patterns for
different data types and operations: the distribution of reads
and writes between graph nodes and edges. In this section
we discuss the approaches used to select the IDs for nodes
used for operations.

The access patterns for node reads, node writes, edge
reads and edge writes are separately configurable using the
previously described probability distribution framework. We
use the algorithm described by Gray et al. [25] to implement
a Zipf probability distribution that is used for node accesses,
with parameters calculated based on the fitted pareto dis-
tributions in Section 3.5.

The most straightforward access patterns are for node
queries, where only the node ID must be chosen. Since we
observed that node query frequency was uncorrelated with
the number of out-edges, we use a different shuffler to that
used to generate outdegree.

For edge queries, we saw a loose correlation between row
hotness and outdegree in the real workload. In order to
simulate this loose correlation two access distributions are
combined: one with the same shuffler as the outdegree distri-
bution, giving a perfect correlation between access frequency
and outdegree, and another with a different shuffler and no
correlation. The distributions are blended by selecting from
the correlated distribution with probability pcorr and the
uncorrelated with probability 1− pcorr pcorr is selected such
that the mean range scan size approximately matched the
empirical observations.

Some edge operations (multiget, add, delete, update) re-
quire the the IDs of the edge ends be selected. Some opera-
tions (delete, update) require the edge to be present, while
others (add) require the edge to be absent. In the syn-
thetic benchmark we want to select present or absent edges
as the operation requires. It is not practical for the client
to track which potential edges exist for a large database, so



we exploit the knowledge that edges from node i to nodes
[i..i+ outdegree(id)− 1] were in the initial graph to choose
target nodes with a given probability of the edge existing.
Edges are added or removed during benchmarking, so to
handle the cases of inserting existing edges and updating
non-existing edges, a single combined insert/update opera-
tion is used that inserts if not present or updates if present.

4.5.2 Arrival Rate

In order to generate latency/throughput curves, we want
to be able to control the arrival rate of new operations. We
assume that the average arrival rate (a configurable parame-
ter) remains constant during the benchmark and choose the
interval between arrivals from an exponential distribution.

4.5.3 Operation Mix

Given the timing of an operation, we then need to select
the operation to execute and then the parameters of that
operation. We do not attempt to capture any temporal cor-
relation between different operation types. The steps for all
operations are the same:

1. An operation from Table 3 is selected. The measure-
ments of the operation mix in Section 3.4 are used to
select which operation to execute.

2. The ID (ID of the node or ID1 of the edge) is chosen
as described previously

3. For edge queries, a association type is selected uni-
formly.

4. For non-range edge queries, the number of edges is
selected using a geometric distribution with p = 0.382,
yielding the same mean as observed (2.615 IDs per
query).

5. Any required target node IDs of edges are chosen as
described previously.

6. For data modification, node or edge fields are filled in
with the same method as the load phase.

7. For edge range queries, a fixed result limit of 10, 000
is used. By default, the queries return the most re-
cent rows, but a small fraction are history queries that
specify a maximum timestamp.

The decision to generate node/payload data from scratch
for every operation is an imperfect approximation of the real
workload, since the workload characterization in Section 3.8
revealed that many updates only made a small change to
data size or did not change some fields at all. This inaccu-
racy may slightly hurt update performance on storage layers
that perform in-place modification of data, since the addi-
tional churn in data size and values may result in more frag-
mentation, page splitting, and dirty pages.
The fixed range result limit of 10, 000 should be reason-

ably reflective of the real workload: 90% of queries used
that limit, while very few queries return more than 1, 000
rows. The client generates range history queries by main-
taining a fixed-size cache of (id1, association type, times-
tamp) records which are added whenever a range query re-
turns 10, 000 rows (which indicates there is likely more his-
tory past the oldest timestamp). This simulates a process
where a client, after retrieving the first 10, 000 entries in a
list of edges, may later retrieve further history. This is the
only stateful element of the LinkBench client.

4.6 Metrics
There are a number of key metrics that we want LinkBench

to measure. The most important metrics for speed are op-
eration latency and throughput. We measure latency in
LinkBench from the time when the operation to be executed
is selected in the Linkbench client until the time when the
client receives all result data for a read operation or receives
confirmation of durable completion for a write operation.

The mean operation throughput should be reported, along
with the latency statistics for each operation type that are
reported by LinkBench: latency at 50th, 75th, 95th, 99th
percentiles, maximum latency, and mean latency.

Latency versus throughput curves can be obtained by
varying the arrival rate of operations. A complete compari-
son of two systems will show a complete curve. Latency for
specific operation types at the given level of throughput can
also be reported.

Price/performance is also important, so for comparison of
commercial systems, peak throughput per dollar for the full
system (hardware and software) should be reported.

Several measures of resource utilization by the database
system under test should be collected at regular intervals:

• CPU usage: user, system, idle, and wait.

• Read and write I/O operations per second.

• Read and write I/O rate in MB/s.

• Resident memory size.

• Persistent storage size, including temporary indices,
tables, and logs.

All of these metrics are useful for understanding system per-
formance and efficiency. Storage size has become increas-
ingly important as the bottleneck for systems with solid
state disks is often capacity rather than I/O.

4.7 Validating Benchmark Configuration
Although LinkBench is customizable, we also focused on

creating a workload configuration that would closely match
the workload characterized earlier in this paper. This section
summarizes how the match between LinkBench and our real
workload can be validated in certain important dimensions.

The generated graph matches in several dimensions by
construction: the outdegree distribution exactly matches the
empirical outdegree distribution, while node and edge pay-
load data sizes follow a similar log-normal distribution and
have the same compression ratios.

The workload generated also matches in several dimen-
sions by construction. The mix of different operation types
is the same and the distributions of reads and writes to nodes
follow power-law distribution with empirically derived expo-
nents. The mean number of keys per multiget is the same
and has a similar skewed distribution.

One important property of the workload that we could
not guarantee by construction was the mean number of re-
sult rows for range queries, which was measured at approxi-
mately 21 rows. Our first attempted configuration lead to an
average result size of several hundred rows, which markedly
affected results. We brought this down to 20 − 30 rows by
modifying the configuration in several ways. Edges were
split into two different association types, halving average
length. We limited edge history queries, which tend to have
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(c) CPU and memory utilization

Figure 13: Operation throughput and system resource uti-
lization over time (in secs)

larger results, to 0.3% of range queries, less than the 0.96%
observed. We finally set pcorr = 0.005 for edge reads, so the
outdegree-correlated distribution is used only 0.5% of the
time.

5. MYSQL BENCHMARK RESULTS
In this section we present results of benchmarking MySQL

with LinkBench. The system under test is MySQL 5.1.53
with the Facebook patch. MySQL was configured with a
120GB InnoDB buffer pool and the association table parti-
tioned 32 ways to reduce mutex contention. Full durability
was enabled with logs flushed to disk at transaction commit
and a binary log for replication generated. Separate hosts
were used for the LinkBench client and MySQL server. The
MySQL host had 2 CPU sockets, 8+ cores/socket, 144GB
of RAM and solid-state storage with read latency at 16kB
less than 500µs.
In order to ensure that benchmark performance was not

bottlenecked by the LinkBench client, we did several runs
while monitoring the client. The MySQL server was satu-
rated using only a fraction of client CPU and network ca-
pacity. To double-check this result, we ran two LinkBench
clients concurrently on different hosts and confirmed that
this did not increase overall operation throughput.
A graph with 1.2 billion nodes and approximately 5 billion

edges was generated, which occupied 1.4TB on disk.
We ran a benchmark with 50 concurrent requesting threads

performing 25 million requests in total. Figure 13 shows
benchmark throughput and resource utilization and Table 6
reports operation latencies at different percentiles. The bench-

mean p25 p50 p75 p95 p99 max
object get 1.6 0.4 0.6 1 9 13 191
object insert 4.2 1 3 5 12 20 142
object delete 5.2 2 3 6 14 21 142
object update 5.3 2 3 6 14 21 143
assoc count 1.3 0.3 0.5 0.9 8 12 65
assoc range 2.4 0.7 1 1 10 15 2064
assoc multiget 1.7 0.5 0.8 1 9 14 53
assoc insert 10.4 4 7 14 25 38 554
assoc delete 5.1 0.5 1 7 19 31 468
assoc update 10.3 4 7 14 25 38 554

Table 6: MySQL LinkBench operation latencies in ms

mark took 2,266 seconds, for an average throughput of 11,029
requests a second. The system goes through a warm-up
phase as the InnoDB buffer pool is populated with pages
from disk and those pages are dirtied with writes. After a
period it enters a steady-state phase. During the steady-
state phase I/O read utilization remains high, indicating
that the working set of the benchmark is larger than main
memory. The high rates of I/O operations and I/O through-
put highlight the benefit that MySQL/InnoDB can derive
from solid-state storage.

6. CONCLUSION
We have presented the motivation and design of LinkBench,

a database benchmark that reflects real-world database work-
loads for social applications. We characterized the social
graph data and accompanying database workload for Face-
book’s social network, extracting key statistical distributions
and showing how power law distributions occur in several
places. We then described the design and construction of
a benchmark that mimics the key aspects of the database
workload and presented a performance profile of the MySQL
database system under this workload.

The benchmark software has been released as open source
and we hope can be used by others to profile and experiment
with other database systems. We will extend LinkBench
with adapters for further database systems as we continue
to evaluate new database technology for use at Facebook.
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APPENDIX

A. HBASE/MYSQL EXPERIMENT
The HBase/MySQL comparison was begun in 2011 with

the goal of reducing total cost of storing massive amounts of
data in MySQL. HBase was already in production deploy-
ment for Facebook Messages. In addition it supports high
write throughput and maintains replicas for quick failover.

A MySQL and a HBase cluster both received a portion of
production requests. The HBase cluster had five machines:
a HDFS NameNode, a HBase master and three nodes run-
ning both HDFS Datanode and HBase Region Server. Face-
book’s internal branches of HBase (roughly corresponding
to HBase release 0.94) and HDFS were used. A native C++
client for HBase was developed and used for benchmarking.
LZO compression was used. The MySQL cluster had three
machines each running one MySQL server. Zlib compres-
sion was used. Both MySQL and HBase servers had 8GB
of memory available for data caching (the OS buffer cache
was disabled). In-house experts for both MySQL and HBase
were involved in tuning and optimizing both systems, lead-
ing to HBase enhancements for latency and I/O.

We measured the 99th percentile latencies of several oper-
ations. Latencies were similar or markedly lower on MySQL.

MySQL p99 Latency HBase p99 Latency
assoc range 25.3ms 54.8ms
assoc get 21.9ms 39.0ms
assoc insert 39.2ms 56.3ms
assoc delete 49.9ms 52.3ms

System resource utilization was markedly different be-
tween MySQL and HBase processing the same workload.
CPU utilization for HBase servers fluctuated between 20%
and 35%, while it remained steady at around 5% for the
MySQL servers. I/O operations per second varied greatly
with HBase, varying sharply from 1000 up to above 2000,
while MySQL consistently used 1200-1400.

This experiment showed that HBase consumed more CPU
and incurred more I/O operations for the Facebook Graph
workload. It also demonstrated the challenges in building
custom tools to shadow production load onto test systems.


