FLOATING POINT ARITHMETHIC - ERROR ANALYSIS

e Brief review of floating point arithmetic
e Model of floating point arithmetic

e Notation, backward and forward errors
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Roundoff errors and floating-point arithmetic

»  The basic problem: The set A of all possible representable
numbers on a given machine is finite - but we would like to use this
set to perform standard arithmetic operations (+,*,-,/) on an infinite
set. The usual algebra rules are no longer satisfied since results of

operations are rounded.

» Basic algebra breaks down in floating point arithmetic.

Example: | In floating point arithmetic.

a+(b+c)!'= (a+0b)+c

#| Matlab experiment: For 10,000 random numbers find number of
instances when the above is true. Same thing for the multiplication..
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Floating point representation: |

Real numbers are represented in two parts: A mantissa (significand)
and an exponent. If the representation is in the base 3 then:

r — ::(.d1d2 c e dt)ﬁe

» .dydy - - dyis a fraction in the base-(3 representation (Generally
the form is normalized in that d; 7% 0), and e is an integer

»  (Often, more convenient to rewrite the above as:

r=*£(m/B") x B¢ =Etm x g

»  Mantissa m is an integer with 0 < m < 8% — 1.
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Machine precision - machine epsilon

»  Notation : fl(x) = closest floating point representation
of real number x ('rounding’)

» When a number x is very small, there is a point when 1+x ==

1 in a machine sense. The computer no longer makes a difference
between 1 and 1 + x.

Machine epsilon: | The smallest number € such that 1 + € is a

float that is different from one, is called machine epsilon. Denoted
by macheps or eps, it represents the distance from 1 to the next

larger floating point number.

» With previous representation, eps is equal to 3~ (¢—1).
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Example: |In [EEE standard double precision, 3 = 2, and t =
53 (includes ‘hidden bit'). Therefore eps = 272,

Unit Round-off A real number @ can be approximated by a floating
number fl(ax) with relative error no larger than u = %B_(t_l).

» u is called Unit Round-off.

» In fact can easily show:

fl(x) = (1 + J) with [§] < u

#| Matlab experiment: find the machine epsilon on your computer.

»  Many discussions on what conditions/ rules should be satisfied
by floating point arithmetic. The IEEE standard is a set of standards
adopted by many CPU manufacturers.
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Rule 1. |

fl(x) = x(1 + €), where |e|] < u

Rule 2. I For all operations (® (one of +, —, *, /)

fllx ©y) = (O y)(1 +€), where |ep| < u

Rule 3. I For +, % operations

fila®b) = fi(b ® a)

#| Matlab experiment: Verify experimentally Rule 3 with 10,000
randomly generated numbers a;, b;.
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Example: | Consider the sum of 3 numbers: y = a + b + c.
» Done as fl(fl(a + b) + ¢)

n = flla+b) = (a+b)(1 + €)
Y1 = fln+c) = (n+c)(1 + e)
[(@+b)(1+ €1) + ] (1 + €2)
= [(@a+b+c)+ (a+b)er)] (1 + €2)

a-+b
= (a+ b+ c) 1+a—|—b—|—c€1(1+€2)+€2

So disregarding the high order term €;€5

fl(flla+b) +c) = (a+b+c)(1 + €3)
a-+b

€3 = €1 + €2

a-+ b+ c

4-7 TB: 13-15; GvL 2.7; Ort 9.2; AB: 1.4.1-.2 — Float

4-7



» If we redid the computation as y2 = fl(a + fl(b+ c)) we

would find

flla+ fl(b+c)) = (a+b+c)(1 + €4)
b+ c

a-+ b+ c

Q

€4 €1 + €2

»  The error is amplified by the factor (a + b) /y in the first case
and (b 4 ¢) /vy in the second case.

» |n order to sum m numbers accurately, it is better to start with
small numbers first. [However, sorting before adding is not worth it.]

»  But watch out if the numbers have mixed signs!
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The absolute value notation

» For a given vector x, |x| is the vector with components |x;|,
i.e., || is the component-wise absolute value of .

»  Similarly for matrices:

|A| = {l|aij|}i=1,...m: j=1,..n
»  An obvious result: The basic inequality
| fl(aij) — ai| < u fag]
translates into

fllA)= A+ E with |E| <u |A]

» A< Bmeansa;; < bjforalll1<1<m; 1 <3< n
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Backward and forward errors

»  Assume the approximation g to y = alg(x) is computed by
some algorithm with arithmetic precision €. Possible analysis: find
an upper bound for the Forward error

|Ay| = |y — 9

»  This is not always easy.

Alternative question: | find equivalent perturbation on initial data

(x) that produces the result . In other words, find Ax so that:

alg(x + Ax) =g

»  The value of |Ax| is called the backward error. An analysis to
find an upper bound for |Ax| is called Backward error analysis.
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a b d e
Example: A= (O c) B = (0 f)

Consider the product: fl(A.B) =

[ad(l +e) | [ae(1+ ) +bf(1+ €3)] (1 + e4)]
0 cf(1+ es)

with ¢; < u, fort = 1,..., 5. Result can be written as:

[ao b(1cjz1e2(€t)+ e4)] [d(l q(u)el) e(l + e;)(l + e4)]

> So fl(A.B) = (A + E.)(B + Eg).

» Backward errors E 4, Eg satisfy:
|E4l <2u|A|4+O0(u?; |Eg| <2u|B|+0(u?
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» When solving Ax = b by Gaussian Elimination, we will see that
a bound on ||e;|| such that this holds exactly:

A(wcomputed + ea:) = b

is much harder to find than bounds on || E 4|, ||es|| such that this
holds exactly:

(A + EA)wcomputed — (b + Gb).

Note: In many instances backward errors are more meaningful than
forward errors: if initial data is accurate only to 4 digits say, then
my algorithm for computing x need not guarantee a backward error
of less then 1071V for example. A backward error of order 10=% is
acceptable.
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Error Analysis: Inner product

» |nner products are in the innermost parts of many calculations.
Their analysis is important.

Lemma: If |§;] < u and nu < 1 then

nu

I  (1496;) =1+6, where |6, < —
-~ 1 — nu

»  Common notation ~,, = T

#] Prove the lemma [Hint: use induction]
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»  (Can use the following simpler result:

Lemma: If |§;] <u and nu < .01 then
I ,(1496;) =1+ 60, where |6, <1.01nu

Example:

Previous sum of numbers can be written

flla+b+c) = a(l+ €)1 + €3)

—|— b(]_ —|— 61)(1 —|— 62) —|— C(]_ —|— 62)

— exact sum of slightly perturbed inputs,

where all ;'s satisfy |6;| < 1.01nu (here n = 2).

»  Alternatively, can write ‘forward’ bound:
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Analysis of inner products (cont.)

Consider 8n=fl(wl*yl—l—wg*yg—l—---—I—aen*yn)

» In what follows 73;'s come from %, €;'s comme from +
»  They satisfy: |n;] < u and |¢;| < u.

»  The inner product s,, is computed as:

1. s1 = fl(x1y1) = (x1y1) (1 4+ 1m1)

2. 82 = fl(s1+ fl(x2yz2)) = fl(s1 + x2y2(1 + 12))
= (z1y1(1 + m) + z2y2(1 + 12)) (1 + €2)
= x1y1(1 + 7)) (1 + €2) + T2y2(1 + n2) (1 + €2)

3. 83 = fl(s2 + fl(x3ys)) = fl(s2 + z3y3(1 4+ n3))
= (82 + z3ys3(1 + n3)) (1 + €3)
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Expand: S3 = a:lyl(l -+ ?’]1)(1 -+ 62)(1 -+ 63)
+x2y2(1 + m2) (1 + €2) (1 + €3)
+x3y3(1 + n3) (1 + €3)

» Induction would show that [with convention that €; = 0]
s =Y wiyi(1+m) [[(1+¢)
i=1 j=i

(Q: How many terms in the coefficient of a;y; do we have?

e Whene >1:1+(n—21+1)=n—1+ 2
@ When 2 = 1 : n (since e = 0 does not count)

A:

» Bottom line: always < n.
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»  For each of these products
(1+m) [[i_;(1+¢€)=1+6; with [0 < ~vu so:

S, = Z?:l a:z-yz-(l -+ 92) with |9f,/| S Yn  OF:

fl (Zyzl w%y%) — Z?:l TilYi + Z?=1 x;y:0; with [0;] < v,

»  This leads to the final result (forward form)

fl (Z évzyz) — Ziﬂzyz < ’Ynz EAIA
i=1 i=1 i=1
» or (backward form)

Il (Z ilfzyz> = Zwiyi(l + 6;) with 0;| < v,
i—1

1=1
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Mawn result on inner products:

» Backward error expression:

fllz"y) =[x (1 + do)] [y .+ (1 + dy)]

where ||dgl|lee < 1.01nu, U = o, y.

» Can show equality valid even if one of the d,, d, absent.

»  Forward error expression: | fl(x"y) — 2"y| < vn |z]" |y

with 0 < ~,, < 1.01nu.

» Elementwise absolute value || and multiply .* notation.

»  Above assumes nu < .01.

For u = 2.0 X 1071, this holds for n < 4.5 x 10'3.
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»  (Consequence of lemma:

|fI(A * B) — A x B| < v |A] * |B|

»  Another way to write the result (less precise) is

1fl(zTy) — 2Ty| < nu |z|T |y| + O(u?)
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#]| Assume you use single precision for which you have u = 2. X
107%. What is the largest n for which nu < 0.01 holds? Any

conclusions for the use of single precision arithmetic?

#| What does the main result on inner products imply for the case
when y = x? [Contrast the relative accuracy you get in this case

vs. the general case when y # x|
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#| Show for any @, y, there exist Ax, Ay such that

fl(xy) = (x + Azx)ly, with |Az| < ~,|z|
flz'y) = =’ (y + Ay), with [Ay| < ynlyl

4] (Continuation) Let A an m X m matrix,  an m-vector, and
y = Ax. Show that there exist a matrix A A such

fi(y) = (A+ Ad)z, with |AA| < 7,/A]

#] (Continuation) From the above derive a result about a column
of the product of two matrices A and B. Does a similar result hold
for the product AB as a whole?
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Error Analysis for linear systems: Triangular case

»  Recall

ALGORITHM : 1. Back-Substitution algorithm

Fortr =n: —1:1 do:
t::bz’
Forj:i—l—lzndo}t

=1t — (ai,i—|—1:n7 wi—l—lm)

t:=t—a;x; !
g — t — an inner product

End
Xr, = t/aii
End

»  We must require that each a;; 7 0

»  Round-off error (use previous results for (-, +))?
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The computed solution & of the triangular system Ux = b
computed by the back-substitution algorithm satisfies:

(U + E)2 =b

with

E| <nu |U|+0(u?)

»  Backward error analysis. Computed x solves a slightly perturbed
system.

» Backward error not large in general. It is said that triangular
solve is “backward stable”.
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Error Analysis for Gaussian Elimination

If no zero pivots are encountered during Gaussian elimination (no
pivoting) then the computed factors L and U satisfy

LU=A+H
with

[H| < 3(n—1) x u (|A]+ |L] |U]) + O(u?)

Solution & computed via i;g —band Uz = Yy iss. t.
(A + E)z = b with

|E| < nu (3|A| +5 L] |U]) +O(u?)
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>

“Backward’ error estimate.

» |L| and |U| are not known in advance — they can be large.

»  What if partial pivoting is used?

»  Permutations introduce no errors. Equivalent to standard LU
factorization on matrix PA.

» |L| is small since I;; < 1. Therefore, only U is “uncertain”

» In practice partial pivoting is “stable” — i.e., it is highly unlikely
to have a very large U.

#

Read Lecture 22 of Text (especially last 3 subsections) about

stability of Gaussian Elimination with partial pivoting.
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Supplemental notes: Floating Point Arithmetic

In most computing systems, real numbers are represented in two
parts: A mantissa and an exponent. If the representation is in the

base 3 then:

€r = ::(.d1d2 © o dm)lgﬁe

» .dids---d,, is a fraction in the base-(3 representation
» e is an integer - can be negative, positive or zero.

»  Generally the form is normalized in that d; # O.
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Example: | In base 10 (for illustration)

1. 1000.12345 can be written as
0.100012345:y x 10%

2. 0.000812345 can be written as
0.812345,, X 103

»  Problem with floating point arithmetic: we have to live with
limited precision.

Example: | Assume that we have only 5 digits of accuray in the
mantissa and 2 digits for the exponent (excluding sign).

.dl d2 d3 d4 d5 €1 €2

4-27 TB: 13; GvL 2.7; Ort 9.2; AB: 1.4.1-. — FloatSuppl

4-27



Try to add 1000.2 = .10002e+-03 and 1.07 = .10700e+-01:
1000.2 =1.1/0 0/0/2]0|4 ; 1.07=.107/700/01

First task: I align decimal points. The one with smallest exponent

will be (internally) rewritten so its exponent matches the largest one:

1.07 = 0.000107 x 10*

Second task: | add mantissas:

]+

ol o o
—_ O
oo o
oo o
| O
N O N
~ |~
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Third task: |
round result. Result has 6 digits - can use only 5 so we can

»  Chop result: .1/0/0/1 2 ;
» Round result: .1/ 0013

Fourth task: |

Normalize result if needed (not needed here)
result with rounding: .1/0/0/1/3 /0 4
#)| Redo the same thing with 7000.2 + 4000.3 or 6999.2 + 4000.3.
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Some More Examples

» Each operation fl(x ® y) proceeds in 4 steps:
1. Line up exponents (for addition & subtraction).
2. Compute temporary exact answer.
3. Normalize temporary result.
4. Round to nearest representable number
(round-to-even in case of a tie).
.40015 e+02 | .40010 e+02| .41015 e-98
+ .60010 e+02 .50001 e-04 -.41010 e-98
temporary | 1.00025 e+02| .4001050001e+02| .00005 e-98
normalize | .100025e+03|.400105¢ e+02| .00050 e-99
round .10002 e+03| .40011 e+02| .00050 e-99
note: round to round to nearest too small:
even e=not all 0’s unnormalized
exactly haltway closer to exponent, 1s
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The IEEE standard
32 bit I (Single precision) :

8 bits | < 23 bits —

\‘/_'/ A ~\ -
exponent mantissa

sign

»  Number is scaled so it is in the form 1.d{d>...d23 X 2¢ - but
leading one is not represented.

» e is between -126 and 127.

» [Here is why: Internally, exponent e is represented in “biased” form: what is
stored is actually ¢ = e + 127 — so the value ¢ of exponent field is between 1

and 254. The values ¢ = 0 and ¢ = 255 are for special cases (0 and co)]
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64 bit I (Double precision)

+ | 11 bits <— bB2bits —

H/_/ ~ ~N -
exponent mantissa

sign

»  Bias of 1023 so if e is the actual exponent the content of the
exponent field is ¢ = e + 1023

»  Largest exponent: 1023; Smallest = -1022.
» ¢ = 0 and ¢ = 2047 (all ones) are again for 0 and oo

» Including the hidden bit, mantissa has total of 53 bits (52 bits
represented, one hidden).

» In single precision, mantissa has total of 24 bits (23 bits repre-
sented, one hidden).
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#| Take the number 1.0 and see what will happen if you add
1/2,1/4,....,27% Do not forget the hidden bit!

Hidden bit  (Not represented)
Expon. | < 52 bits —
e |1/10000/000/00|0

e |1/0/1/0/00/0/00/0]/00O0
e |1/000100/000/00|0

e |1/000000/000/00|1
e |1/000000/000/00|0

(Note: The 'e’ part has 12 bits and includes the sign)

»  Conclusion
FU(1 +27°%) £ 1 but: fI(14+27%)==11
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Special Values

»  Exponent field = 00000000000 (smallest possible value)
No hidden bit. All bits == 0 means exactly zero.

»  Allow for unnormalized numbers,
leading to gradual underflow.

»  Exponent field = 11111111111 (largest possible value)
Number represented is " Inf" "-Inf" or "NaN".
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