EIGENVALUE PROBLEMS

e Background on eigenvalues/ eigenvectors / decompositions
e Perturbation analysis, condition numbers..

e Power method

e The QR algorithm

e Practical QR algorithms: use of Hessenberg form and shifts

e The symmetric eigenvalue problem.
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FEigenvalue Problems. Introduction

Let A an n X n real nonsymmetric matrix. The eigenvalue problem:

Axr = \x xe C: eige_:nvalue
x € C™: eigenvector

Types of Problems:

e Compute a few \; 's with smallest or largest real parts;
e Compute all A;'s in a certain region of C;
e Compute a few of the dominant eigenvalues;

e Compute all A;'s.
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FEigenvalue Problems. Their origins

e Structural Engineering [Ku = AMu]

e Stability analysis [e.g., electrical networks, mechanical system,. ]|
e Bifurcation analysis [e.g., in fluid flow]

e Electronic structure calculations [Schrédinger equation. .|

e Application of new era: page ranking on the world-wide web.
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Basic definitions and properties

A complex scalar A is called an eigenvalue of a square matrix A if
there exists a nonzero vector u in C" such that Au = Au. The
vector u is called an eigenvector of A associated with X. The set
of all eigenvalues of A is the ‘spectrum’ of A. Notation: A(A).

» A is an eigenvalue iff the columns of A — AI are linearly
dependent.

» ... equivalent to saying that its rows are linearly dependent. So:
there is a nonzero vector w such that

w’(A—XI) =0

» w is a left eigenvector of A (u= right eigenvector)

> Xis an eigenvalue iff [det(A — AI) = 0]
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Basic definitions and properties (cont.)

»  An eigenvalue is a root of the Characteristic polynomial:

pa(X) = det(A — XI)

» So there are n eigenvalues (counted with their multiplicities).

»  The multiplicity of these eigenvalues as roots of p4 are called
algebraic multiplicities.

»  The geometric multiplicity of an eigenvalue \; is the number of
linearly independent eigenvectors associated with A;.
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»  Geometric multiplicity is < algebraic multiplicity.
»  An eigenvalue is simple if its (algebraic) multiplicity is one.

» It is semi-simple if its geometric and algebraic multiplicities are
equal.

Consider

12 —4
A=[01 2
00 2

Eigenvalues of A? their algebraic multiplicities? their geometric
multiplicities? |s one a semi-simple eigenvalue?

Same questions if ass is replaced by one.

Same questions if a5 is replaced by zero.
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»  Two matrices A and B are similar if there exists a nonsingular
matrix X such that

A=XBX!

Definition: | A is diagonalizable if it is similar to a diagonal matrix

»  THEOREM: A matrix is diagonalizable iff it has n linearly
independent eigenvectors

» .. iff all its eigenvalues are semi-simple

» ... iff its eigenvectors form a basis of R™

» Av = Av <= B(X ) = A(X1v)

eigenvalues remain the same, eigenvectors transformed.
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Other Transformations Preserving Eigenstructure

Shift B=A—-o0l: Av=Av <= Bv=(A—o)v
eigenvalues move, eigenvectors remain the same.

Poly- B =p(A) =ail +:+-+ a, A" Av = Av <=
nomial  Bv = p(A)v
eigenvalues transformed, eigenvectors remain the same.

Invert B=A"1 Av=Xv <= Bv=X1w
eigenvalues inverted, eigenvectors remain the same.

Shit& B = (A — ol)™: Av = X <= Bv =
Invert (A—o)
eigenvalues transformed, eigenvectors remain the same.
spacing between eigenvalues can be radically changed.
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» THEOREM (Schur form): Any matrix is unitarily similar to a
triangular matrix, i.e., for any A there exists a unitary matrix Q
and an upper triangular matrix R such that

A = QRQY

»  Any Hermitian matrix is unitarily similar to a real diagonal
matrix, (i.e. its Schur form is real diagonal).

» |t is easy to read off the eigenvalues (including all the multiplic-
ities) from the triangular matrix R

» Eigenvectors can be obtained by back-solving
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Schur Form — Proof

Show that there is at least one eigenvalue and eigenvector of A:
Ax = Az, with |||l = 1

There is a unitary transformation P such that Px = e;. How
do you define P?

Show that PAPH — [ M** )
0 A,

Apply process recursively to As.
What happens if A is Hermitian?

Another proof altogether: use Jordan form of A and QR factor-
ization
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Perturbation analysis

»  General questions: If A is perturbed how does an eigenvalue
change? How about an eigenvector?

» Also: sensitivity of an eigenvalue to perturbations

THEOREM [Gerschgorin]

j=n

VA €A(A), Fi suchthat |A—aul <) layl.
=1l
i#i

» In words: eigenvalue X is located in one of the closed discs of the
complex plane centered at a;; and with radius p; = Zj 2 i laij] -
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Proof: By contradiction. If contrary is true then there is one eigen-
value A\ that does not belong to any of the disks, i.e., such that
A — ai;| > p; for all &. Write matrix A — AT as:

A—X=D-AX[—-[D—-Al=(D—-X)—F

where D is the diagonal of A and FF = D — A is the matrix of
off-diagonal entries. Now write

A—XI=(D—-XI)(I— (D—-XI)"'F).

From assumptions we have ||(D — AI)71F||o < 1. (Show this).
The Lemma in P. 5-3 of notes would then show that A — AI is
nonsingular — a contradiction []
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Gerschgorin’s theorem - example

Find a region of the complex plane where the eigenvalues of the
following matrix are located:

1 -1 0 0
0 2 0 1
A=1|_1 9 31
1 1
z 2 0 —4

»  Refinement: if disks are all disjoint then each of them contains
one eigenvalue

» Refinement: can combine row and column version of the theorem
(column version: apply theorem to AH).

12-13 TB: 24-27; AB: 3.1-3.3;GvL 7.1-7.4,7.5.2 — Eigen

12-13

» Application: If A is diagonalizable, A = PAP~1,
with A = the diagonal matrix of eigenvalues

& P = the matrix of eigenvectors, then apply Gerschgorin to A +
P'EP =P YA+ E)P.

» Can apply same to block diagonalizable matrix.
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Bauer-Fike theorem

THEOREM [Bauer-Fike] Let X, @ be an approximate eigenpair with

|[@|]2 = 1, and let r = Au — A@ ('residual vector’). Assume
A is diagonalizable: A = X DX ™!, with D diagonal. Then

I € A(A) suchthat |A— A| < condy(X)||7]|2 -

»  Very restrictive result - also not too sharp in general.

» Alternative formulation. If E is a perturbation to A then for any
eigenvalue A of A + F there is an eigenvalue A of A such that:

IA — Al < condy(X)||E||2 -

Prove this result from the previous one.
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Conditioning of Eigenvalues

»  Assume that A\ is a simple eigenvalue with right and left eigen-
vectors u and w¥ respectively. Consider the matrices:

Eigenvalue A(t),

A(t) = A+ tE
®) + Eigenvector u(t).
»  Conditioning of X of A relative to F is %&t) :
t=0

»  Write A(t)u(t) = A(t)u(t)
»  Then multiply both sides to the left by w
wH (A +tE)u(t) = A(t)wu(t) —
At wHu(t) = w Au(t) + tw? Eu(t)
= AwHu(t) + tw? Eu(t).
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A(t) — A
, wHEu
»  Take the limit at t = 0O, A'(0) = H
wHuy

» Note: the left and right eigenvectors associated with a simple
eigenvalue cannot be orthogonal to each other.

» Actual conditioning of an eigenvalue, given a perturbation “in
the direction of E" is |A’(0)].

» In practice only estimate of || E|| is available, so

IN(0)] < | Ewll2]|w]|2 ! ||2IIUIIzII’wllz
— (w,w)| T | (w, w)|
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Definition. The condition number of a simple eigenvalue A of an
arbitrary matrix A is defined by

1

dA) = ——
cond(2) cos 0 (u, w)

in which u and w* are the right and left eigenvectors, respectively,
associated with A.

Consider the matrix

—149 —50 —154

A= 537 180 546
—-27 -9 -—-25
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» A(A) = {1,2,3}. Right and left eigenvectors associated with
Al =1:

0.3162 0.6810
u = | —0.9487 and w = | 0.2253
0.0 0.6967
So: cond(A1) =~ 603.64

»  Perturbing a1 to —149.01 yields the spectrum:
{0.2287, 3.2878,2.4735}.

»  as expected..

»  For Hermitian (also normal matrices) every simple eigenvalue is
well-conditioned, since cond(\) = 1.
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Perturbations with Multiple Figenvalues - Example

120 020
» A=|(012]| =134+ |002]| =1+2J
001 000

»  Worst case perturbation is in 3,1 position: set J3; = €.

» Eigenvalues of perturbed A are the roots of
p(p)=(p—1)°>—4-e

» Hence eigenvalues of perturbed A are 1 + O(V/€).

» In general, if index of eigenvalue (dimension of largest Jordan

block) is k, then an O(€) perturbation to A can lead to O(+/€)

change in eigenvalue. Simple eigenvalue case corresponds to k =
1.
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Basic algorithm: The power method

» Basic idea is to generate the sequence of vectors A*vy where
vg # 0 — then normalize.

»  Most commonly used normalization: ensure that the largest
component of the approximation is equal to one.

The Power Method

1. Choose a nonzero initial vector v(©).

2. For k =1,2,..., until convergence, Do:
3. o® = aikAv(k_l) where

4. o = argmaxi:l,...,nl(Av(k_l))'i|

5. EndDo

»  argmax;—i,.n|Xi| = the component x; with largest modulus
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Convergence of the power method

THEOREM Assume there is one eigenvalue Ay of A, s.t. [Aq]| >
[A;|, for 5 # 4, and that Ay is semi-simple. Then either the initial
vector v(%) has no component in Null(A — X;T) or v*) converges
to an eigenvector associated with A\; and ar, — Aj.

Proof in the diagonalizable case.

» v is = vector A*v(©) normalized by a certain scalar &y in
such a way that its largest component is 1.

W = i Vil
i=1

» Decompose initial vector v(®)
in the eigenbasis as:

» Each w; is an eigenvector associated with A;.
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» Note that AFu; = Ay,

1 n
(k) _ ko n).
v\ = X ASviu
scaling ; i ithi
1 n
__1 [A’f’hul-l-z)\f’vfui]

scaling

1

scaling’

»  Second term inside bracket converges to zero. QED

»  Proof suggests that the convergence factor is given by

p | A2
D = —
| A
where A is the second largest eigenvalue in modulus.
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Consider a ‘Markov Chain" matrix of size n = 55.
Dominant eigenvalues are A = 1 and A = —1 » the power

method applied directly to A fails. (Why?)

» \We can consider instead the matrix I+ A The eigenvalue A = 1
is then transformed into the (only) dominant eigenvalue A = 2

Iteration | Norm of diff. | Res. norm| Eigenvalue
20| 0.639D-01/0.276D-011.02591636
40| 0.129D-01/0.513D-021.00680780
60| 0.192D-02/0.808D-03/1.00102145
80| 0.280D-03/0.121D-03/1.00014720
100, 0.400D-04|0.174D-04|1.00002078
120 0.562D-05|0.247D-05|1.00000289
140 0.781D-06|0.344D-06|1.00000040
161 0.973D-07|0.430D-07|1.00000005
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The Shifted Power Method

» In previous example shifted A into B = A + I before applying
power method. We could also iterate with B(o) = A + oI for
any positive o

With o0 = 0.1 we get the following improvement.

Iteration | Norm of diff. |Res. Norm| Eigenvalue
20| 0.273D-01| 0.794D-02|1.00524001
40| 0.729D-03| 0.210D-03|1.00016755
60| 0.183D-04| 0.509D-05|1.00000446
80| 0.437D-06| 0.118D-06|1.00000011
88| 0.971D-07| 0.261D-07|1.00000002
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»  Question: What is the best shift-of-origin o to use?
» Easy to answer the question when all eigenvalues are real.
Assume all eigenvalues are real and labeled decreasingly:

AL > A2 2 A2 2000 2 Ag,
Then: If we shift Ato A — ol

The shift o that yields the best convergence factor is:

>\2+An

Oopt —
2

Plot a typical function ¢(o) = p(A — o) as a function of

o. Determine the minimum value and prove the above result.
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Inverse Iteration

Observation:  The eigenvectors of A and A~! are identical.
» Idea: use the power method on A~1.
Will compute the eigenvalues closest to zero.

Shift-and-invert Use power method on |(A — o I)™!|

will compute eigenvalues closest to o.

YyYYVYY

vl Av

Rayleigh-Quotient Iteration: use o0 = =7

(best approximation to A given v).
» Advantages: fast convergence in general.

»  Drawbacks: need to factor A (or A — oI) into LU.
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