THE SINGULAR VALUE DECOMPOSITION

e The SVD - existence - properties.

Pseudo-inverses and the SVD

e Use of SVD for least-squares problems

Applications of the SVD
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The Singular Value Decomposition (SVD)

Theorem | For any matrix A € R™*™ there exist unitary matrices
U € R™™and V. € R"*" such that

A=UxVT

where 3 is a diagonal matrix with entries o;; > 0.

011 > 022 > + -+ 0pp > 0 with p = min(n, m)

» The o;;'s are the singular values. Notation change 0;; — o

Proof: | Let oy = || Al|2 = maxg z|,=1 ||Ax||2. There exists

a pair of unit vectors v1, wq such that
A’Ul = o1uq
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»  Complete vy into an orthonormal basis of R™

V = [v1, V2] = n X n unitary

»  Complete uq into an orthonormal basis of R™

U = [u1, U] = m X m unitary

Define U, V as single Householder reflectors.

»  Then, it is easy to show that

T T
_ o] w T __[01 W —
AV-UX(0 B)—>UAV—<O B>_A1

10-3 TB: 4-5; AB: 1.1, 2.2; GvL 2.4,5.5 - SVD

10-3

»  Observe that

(o]
|4 (7)), = o2+ llwll® = o + w2
w/ 2

» This shows that w must be zero [why?]

(),

»  Complete the proof by an induction argument. |
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Case 1:

O
O v
A = U X
Case 2:
T
O v
A = U Y
5 O
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The “thin” SVD

»  Consider the Case-1. It can be rewritten as

A = [U,U,] (%1> vT

Which gives:
A=U3x, VT

where Uy is m X m (same shape as A), and 31 and V are n X n
» Referred to as the “thin” SVD. Important in practice.

How can you obtain the thin SVD from the QR factorization of
A and the SVD of an n X n matrix?
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A few properties. | Assume that

0120220, >0ando,1=:-=0,=0

Then:

e rank(A) = r = number of nonzero singular values.

Ran(A) = span{uj, us, ..., u,}

Null(AT) = span{u, 1, Uri2y-- -5 Um}

Ran(AT) = span{v;,va,...,v,}

Null(A) = span{v, 11, Vy12y ..+, Un}
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Properties of the SVD (continued)

e The matrix A admits the SVD expansion:

r
A= E O'i’u,i’U;F
o=l

e ||A||]2 = o1 = largest singular value

o lAllr = (X0, 02)"?

e When A is an i X m nonsingular matrix then ||[A7Y||s = 1/0,
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Theorem | Let kK < r and

k
Ak = Z O'iu,-'vf
=1
then

omin (A= By =4~ A2 = o1
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Proof: First: ||A — B||2 > ok+1, for any rank-k matrix B.
Consider X = span{wvy, v2,- -+ ,Vg+1}. Note:
dim(Null(B)) = n — k — Null(B) N X # {0}
[Why?]
Let zg € Null(B) N X, xg # 0. Write xy = V'y. Then
(A = B)xollz = [|[Azoll2 = [USVIVy|l2 = [[Zyll,
But [|Xyll2 2> ok+allzoll2 (Show this). — [[A — Bll2 > oha

Second: take B = Ay. Achieves the min. Il

10-10 TB: 4-5: AB: 1.1, 2.2; GvL 2.4,5.5 - SVD

10-10

Right and Left Singular vectors:

A’U,; = oO;U;
Tu: = o
A" uj; = ojv;

Consequence AT Av; = ov; and AATw; = olu;
Right singular vectors (v;'s) are eigenvectors of AT A

>
>
»  Left singular vectors (u;'s) are eigenvectors of AAT
>

Possible to get the SVD from eigenvectors of AAT and AT A
— but: difficulties due to non-uniqueness of the SVD
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Define the » X 7 matrix

3, = diag(o1,...,0/)

» let A € R™X" and consider ATA (€ R™* ™)

00
—_—

nxn

2
ATA = VSTSVT s ATA—V (21 0) VT

» This gives the spectral decomposition of AT A.
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» Similarly, U gives the eigenvectors of AAT.

Important:

ATA = VD, VT and AAT = UD,UT give the SVD factors
U,V up to signs!

Pseudo-inverse of an arbitrary matrix

» Let A = UXVT which we rewrite as

¥ 0\ (VF
A= (U Us) <01 0> (V;T) = U, V)"

Then the pseudo in- . e "9 .
verse of A is Al =WVXTU; = Z —vju’

Uit
o

Jj=1

»  The pseudo-inverse of A is the mapping from a vector b to the
solution min, || Az — b||3 that has minimal norm (to be shown)

» In the full-rank overdetermined case, the normal equations yield
T = (ATA)_lATb
%/_/

At
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Least-squares problem via the SVD Answer:  From above, must have y; = X7 °U;b and yp =

Pb: min ||b — Ax||2 in general case. Consider SVD of A:

T

T
A= (Ul U2) (2(3)1 g) (&T) = ZO‘,;’U{U/ZT
2 i=1

Then left multiply by U7 to get

a2 (210 (v _ (UL
4z ot = (50 (32) - ()
. Y1\ VlT
with <y2) = <V2T) €T

What are all least-squares solutions to the system? Among these
which one has minimum norm?

2

2
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anything (free).
»  Recall that x = V'y and write

x = [Vi, Vi (Z;) = Viys + Vays

= WViE['Ub + Vays
= ATb + oy,

» Note: ATb € Ran(A) and Voy, € Null(A).

»  Therefore: least-squares solutions are of the form Atb + w
where w € Null(A).

»  Smallest norm when y» = 0.
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»  Minimum norm solution to min,, || Az — b||3 satisfies ¥1y; =
UlTb, y2 = 0. Itis:

zrs = Vi3 'UTb = At

If A € R™*™ what are the dimensions of AT?, ATA?, AAT?

Show that AT A is an orthogonal projector. What are its range
and null-space?

Same questions for AAT,
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Moore-Penrose Inverse

The pseudo-inverse of A is given by

p ) " vul
T 1 T 3
A_V(O O)U_E '

Moore-Penrose conditions:

The pseudo inverse of a matrix is uniquely determined by these four
conditions:

(1) AXA=A 2) XAX = X
(3) (AX)H = AX (4) (XA)H = XA

» In the full-rank overdetermined case, AT = (ATA)~tAT
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Least-squares problems and the SVD

»  SVD can give much information about solving overdetermined
and underdetermined linear systems.

Let A be an m X m matrix and A = UXV7T its SVD with
r =rank(A), V = [v1,...,0,) U = [t1,...,Up]. Then

T

usz
rrs = g v;

a.
i=1 ¢

minimizes ||b — Ax||2 and has the smallest 2-norm among all
possible minimizers. In addition,

prs = ||b — Azrs||z = ||z]|2 with 2 = [tyi1y -« oy Um]Th
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Least-squares problems and pseudo-inverses

» A restatement of the first part of the previous result:

Consider the general linear least-squares problem
min [|z]lz, §={z € R"|||b— Aw||;min}.
X

This problem always has a unique solution given by

z=A'b
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Consider the matrix: A= ((1) g _22 (1)>
e Compute the singular value decomposition of A

o Find the matrix B of rank 1 which is the closest to the above
matrix in the 2-norm sense.

e What is the pseudo-inverse of A?
e What is the pseudo-inverse of B?

e Find the vector & of smallest norm which minimizes ||b — Ax||2
with b = (1,1)T

e Find the vector x of smallest norm which minimizes ||b — Bx||2
with b = (1,1)T
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Ill-conditioned systems and the SVD

» Let Abem X mand A =UXVT its SVD
» Solution of Az =bisxz=A"1b=>" uib V;

i=1 o,
» When A is very ill-conditioned, it has many small singular values.
The division by these small ;'s will amplify any noise in the data. If

b = b+ € then

m m
A-15 Z u; b 'u,zre
== V; V;
g; g;
i=1 i=1 "
~——
Error

»  Result: solution could be completely meaningless.
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Remedy: | SVD regularization

Truncate the SVD by only keeping the s that are > T, where
T is a threshold
» Gives the Truncated SVD solution (TSVD solution:)

uld
TTSVD = E v;

o;

UiZT

» Many applications [e.g., Image and signal processing,..]
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Numerical rank and the SVD

» Assuming the original matrix A is exactly of rank k the computed
SVD of A will be the SVD of a nearby matrix A + E — Can show:
|6s — 0i] < aoqu

»  Result: zero singular values will yield small computed singular
values and 7 larger sing. values.

»  Reverse problem: numerical rank — The e-rank of A :

re = min{rank(B) : B € R™*", ||A — Bl||» < €},

Show that 7, equals the number sing. values that are >e€

Show: 7. equals the number of columns of A that are linearly
independent for any perturbation of A with norm < €.

»  Practical problem : How to set €7
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Pseudo inverses of full-rank matrices

Case I: m > n | Then AT = (ATA)~1AT

» ThinSVDis A = U121V1T and Vi, 3 are n X n. Then:
(ATA)1AT = (VSRVT) Wiz, UT

= VISV Vs, UT
— vz T
= Al
01
) 1 2 )
Pseudo-inverse of 9 _1 is?
01
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Case 22 m < n | Then AT = AT(AAT)~!

» ThinSVDis A = U121V1T. Now Uy, 31 are m X m and:
AT(AAT) ' = w»ie U] U 22Ul
= s Ulu,s2uT
= W, 22UT
=Wyt
= Al

01 2 0
; y o
Example: | Pseudo-inverse of (1 5 _1 1) is’

»  Mnemonic: The pseudo inverse of A is AT completed by the
inverse of the smallest of (AT A)~! or (AAT)~! where it fits (i.e.,
left or right)
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