
Propositional logic (Ch. 7)

Announcements

Writing 2 graded
- 2 weeks from today to resubmit

Complete-state CSP

So far we have been looking at incremental
search (adding one value at a time)

Complete-state searches are also possible in
CSPs and can be quite effective

A popular method is to find the min-conflict,
where you pick a random variable and update
the choice to be one that creates the least
number of conflicts

This works incredibly well for the n-queens
problem (partially due to dense solutions)

Complete-state CSP

As with most local searches (hill-climbing),
this method has issues with plateaus

This can be mitigated by avoiding recently
assigned variables (forces more exploration)

You can also apply weights to constraints and
update them based on how often they are
violated (to estimate which constraints are
more restrictive than others)

Complete-state CSP

Local search does not have “locally optimal”
solution our general search does

As we have a CSP, the “local optimal” may
occur, but if it is not 0 then we know we are
not satisfied (unless we searched the whole
space and find no goal)

This is almost as if we had an almost perfect
heuristic built in to the problem!

Complete-state CSP

Representing knowledge

So far we have looked at algorithms to find
goals via search, where we are provided with
all the knowledge and possibly a heuristic

With CSP we saw how to apply inference to
rules to find the goal

Now we will expand more on that and fully
represent a knowledge base that will store
the rules/constraints and what we see/deduce

Logic

Minesweep?

http://minesweeperonline.com/
Write down any “deductions/rules” you find!

Logic

One example of a simple rule:
The 1 in corner marks
flag as a mine

Another rule:
The two can mark the two outer mines
if flanked by ones

safe

Logic

The goal is to simply tell the computer about
the rules of the game

Then based on what it sees as it plays, it will
automatically realize these “safe plays”

This type of reasoning is important in partially
observable environments as the agent must
often reason on new/unseen information

Logic: definitions

A symbol represents a part of the environment
(e.g. a minesweep symbol might be if a cell
has a mine or not), like math variables

Each single piece of the knowledge base is a
sentence involving at least one symbol

A model is a valid assignment of symbols,
a “possible outcome” of the environment

Logic: definitions

Side note:

A model is just any assignment of true/false
to the variables

The models of a sentence are all possible
true assignments (i.e. the set of all models)

Logic: definitions

In propositional logic, a symbol is either true
or false (as it represents a proposal of a
“variable”)

If “m” is a model and is “α” a sentence,
m satisfies α means α is true in m (also said
as “m models α”)

Let M(α) be all models of α

http://minesweeperonline.com/

Logic: example

For example, consider a 3x3 minesweep:

After the first play we have:

Let us define P2,3,2 as the proposition that
row 2, column 3 cell has value 2 (i.e. α=P2,3,2)

After playing the first move, we add to the
knowledge base that this proposition is true
(this representation has 10^9 states)

Logic: example

Here is one possible assignment:

This does not satisfy our proposition
P2,3,2 as there are only two mines adjacent to
row 2, column 3 cell

So the assignment does not represent our
knowledge base (i.e. the picture not in M(α))

Logic: entailment

We say α entails β (α╞ β) if and only if every
model with α true, β is also true

Another definition (mathy):
α╞ β if and only if M(α) subset M(β)

This means there are fewer models true
with proposition α than β

Logic: entailment

Consider this example:
There are two valid configurations based on
our knowledge base:

If we let α = {mine at (2,2)}, then this can
mean (if we also know the numbered cells):

We can see that M(above) subset M(α(below))

Logic: entailment

However, if we let β = mine at (3,2), we get:

M(knowledge base (KB)) is (again):

This is not entailment, as this is not in M(β),
thus KB╞ β (in other words “from the KB,
you cannot conclude (3,2) is a mine”)

Logic: model checking

Entailment can generate new sentences for our
knowledge base(i.e. can add “mine at (2,2)”)

Model checking is when we write out all the
actual models (as I did in the last example)
then directly check entailment

This is exponential, and unfortunately this is
very typical (although some are much
worse exponential than others)

Logic: model checking

Model checking...
1. Preserves truth through inference
2. Is complete, meaning it can derive any

sentence that is entailed (and in finite time)

The “complete” is important as some
environments have an infinite number of
possible sentences

Logic syntax

In our (current) logic, we allow 5 operations:
 = logical negation (i.e. “not” T = F)
 = AND operation
 = OR operation (Note: not XOR)

 = “implies” operation
= “if and only if” operation (iff)

The order of operations (without parenthesis)
is top to bottom

Logic syntax

We mentioned a symbol is P1,3,2 but a literal
is either P1,3,2 or ┐P1,3,2

Two notes:
OR is not XOR (exclusive or), which is not the
English “or” (e.g. ordering food)

“implies” only provides information if left
hand side is true (e.g. F = cats can fly, B = cats
are birds: F implies B is true...)

Logic syntax

Here are the truth tables:

And equivalent laws:

Check model

We can make use model checking to make
an inference algorithm, much the same way
we modified DFS to do backtracking search

1. Enumerate possibilities on a symbol (repeat)
2. Once all symbols are assigned, check if

consistent, if not return false (all the way up
tree due to recursive call)

Check model

Example: suppose our KB is “P implies Q”
We want to check α = “not P”
Enumerate P: {P = true}, {P = false}
Enumerate Q: {P=T,Q=T}, {P=T,Q=F},
{P=F,Q=T}, {P=F,Q=F}

Consistent?

No! (top row)
“not P” is false when “P implies Q” is true

P Q not P P → Q

T T F T

T F F F

F T T T

F F T T

	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 9
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

