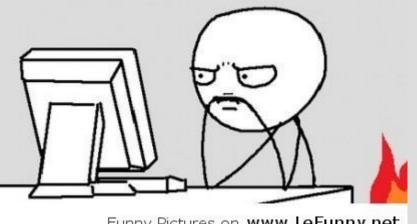
Uninformed Search (Ch. 3-3.4)

Come on, I need answers...



Funny Pictures on www.LeFunny.net

Small examples

8-Queens: how to fit 8 queens on a 8x8 board so no 2 queens can capture each other

幽

Ŵ

Ŵ

Ŵ Two ways to model this: Ŵ Incremental = each action is to Ŵ add a queen to the board Ŵ (1.8 x 10¹⁴ states) Ŵ <u>Complete state formulation</u> = all 8 queens start on board, action = move a queen (2057 states)

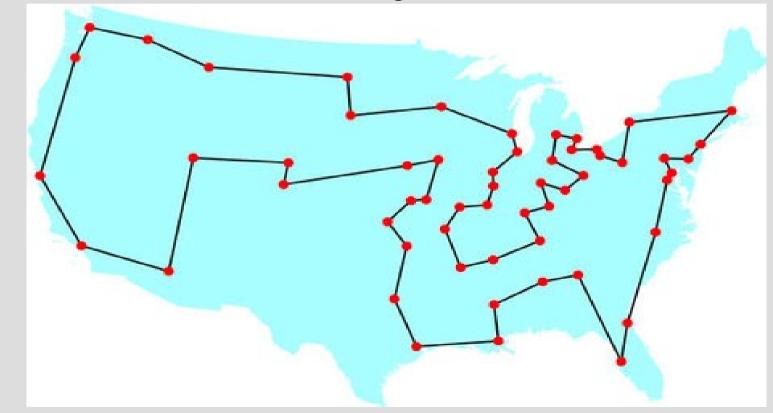
Real world examples

Directions/traveling (land or air)

Model choices: only have interstates? Add smaller roads, with increased cost? (pointless if they are never taken)

Real world examples

Traveling salesperson problem (TSP): Visit each location exactly once and return to start

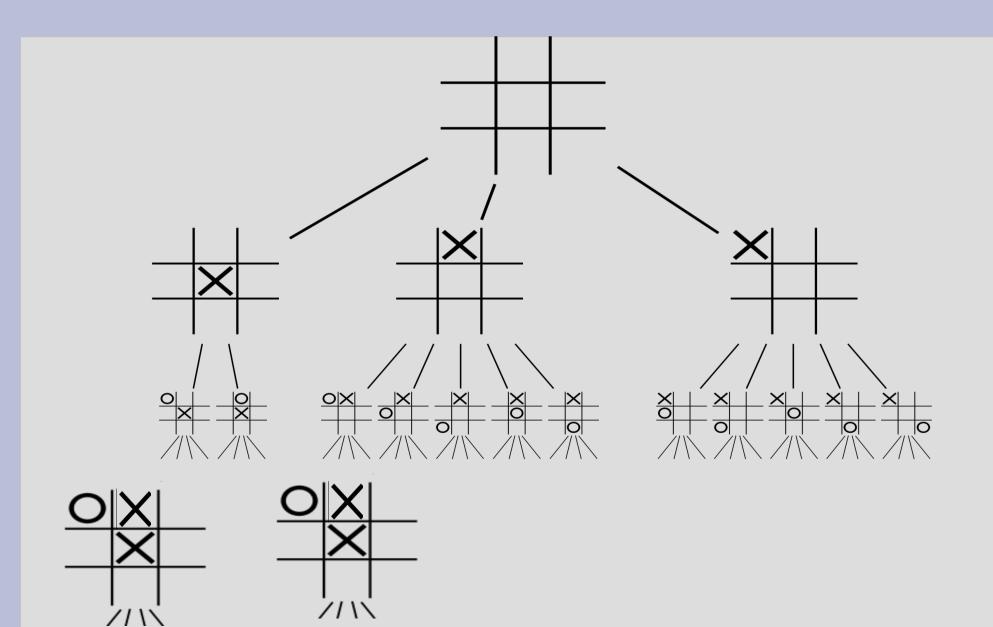


Goal: Minimize distance traveled

To search, we will build a tree with the root as the initial state

function tree-search(root-node) fringe ← successors(root-node) while (notempty(fringe)) {node ← remove-first(fringe) state ← state(node) if goal-test(state) return solution(node) fringe ← insert-all(successors(node),fringe) } return failure end tree-search

Any problems with this?



8-queens can actually be generalized to the question: Can you fit n queens on a z by z board?

Except for a couple of small size boards, you can fit z queens on a z by z board

This can be done fairly easily with recursion

(See: nqueens.py)

We can remove visiting states multiple times by doing this:

```
function tree-search(root-node)
fringe ← successors(root-node)
explored ← empty
while ( notempty(fringe) )
        {node ← remove-first(fringe)
            state ← state(node)
            if goal-test(state) return solution(node)
            explored ← insert(node,explored)
            fringe ← insert-all(successors(node),fringe, if node not in explored)
            }
        return failure
end tree-search
```

But this is still not necessarily all that great...

Next we will introduce and compare some tree search algorithms

These all assume nodes have 4 properties: 1. The current state

2. Their parent state (and action for transition)
 3. Children from this node (result of actions)
 4. Cost to reach this node (from root)

When we find a goal state, we can back track via the parent to get the sequence

To keep track of the unexplored nodes, we will use a queue (of various types)

The explored set is probably best as a hash table for quick lookup (have to ensure similar states reached via alternative paths are the same in the hash, can be done by sorting)

The search algorithms metrics/criteria: 1. Completeness (does it terminate with a valid solution)

- 2. Optimality (is the answer the best solution)
- 3. Time (in big-O notation)
- 4. Space (big-O)

b = maximum branching factor d = minimum depth of a goal m =maximum length of any path(depth of tree)

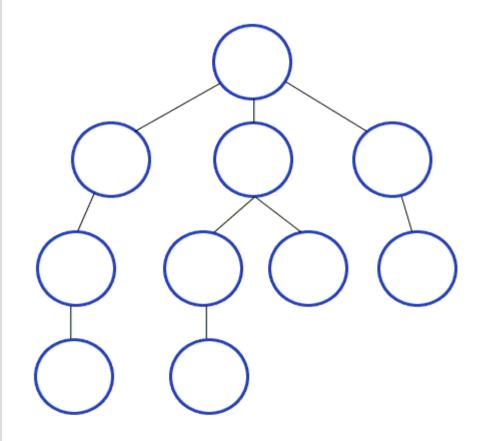
Uninformed search

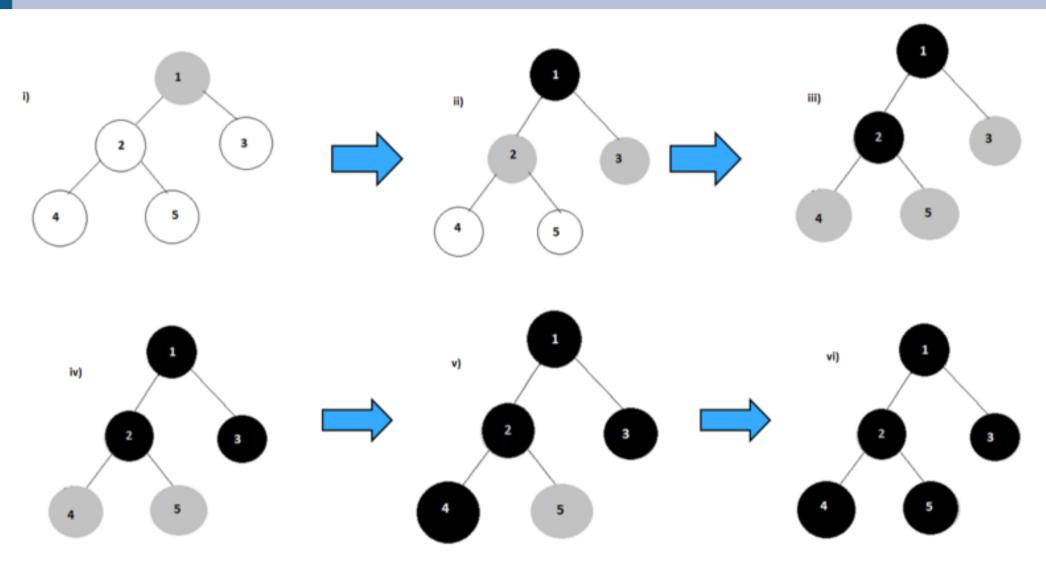
Today, we will focus on <u>uninformed search</u>, which only have the node information (4 parts) (the costs are given and cannot be computed)

Next time we will continue with <u>informed</u> <u>search</u>es that assume they have access to additional structures of the problem (i.e. if costs were distances between cities, you could also compute the distance "as the bird flies")

<u>Breadth first search</u> checks all states which are reached with the fewest actions first

(i.e. will check all states that can be reached by a single action from the start, next all states that can be reached by two actions, then three...)





(see: https://www.youtube.com/watch?v=5UfMU9TsoEM)
(see: https://www.youtube.com/watch?v=nI0dT288VLs)

BFS can be implemented by using a simple FIFO (first in, first out) queue to track the fringe/frontier/unexplored nodes

Metrics for BFS:

Complete (i.e. guaranteed to find solution if exists) Non-optimal (unless uniform path cost) Time complexity = $O(b^d)$ Space complexity = $O(b^d)$

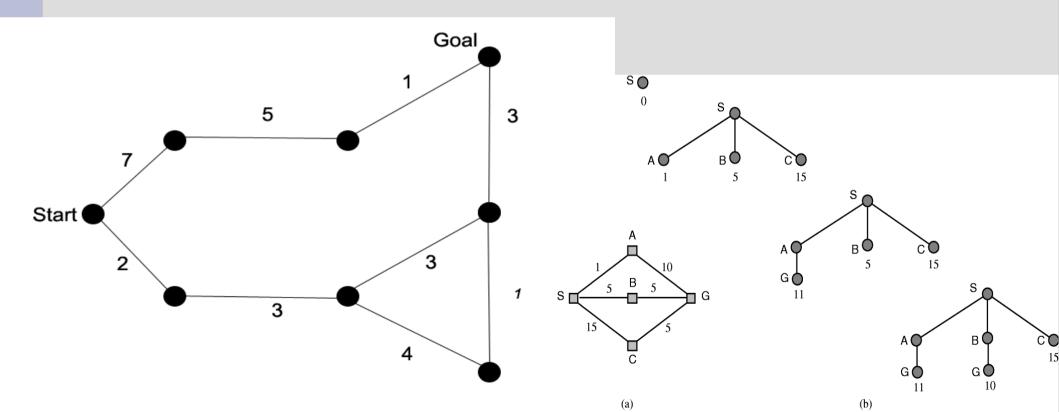
Exponential problems are not very fun, as seen in this picture:

Depth	Nodes	(hemadare)	Time	Ν	Aemory
2	110	.11	milliseconds	107	kilobytes
4	11,110	11	milliseconds	10.6	megabytes
6	10^{6}	1.1	seconds	1	gigabyte
8	10^{8}	2	minutes	103	gigabytes
10	10^{10}	3	hours	10	terabytes
12	10^{12}	13	days	1	petabyte
14	10^{14}	3.5	years	99	petabytes
16	10^{16}	350	years	10	exabytes

Figure 3.13 Time and memory requirements for breadth-first search. The numbers shown assume branching factor b = 10; 1 million nodes/second; 1000 bytes/node.

Uniform-cost search

<u>Uniform-cost search</u> also does a queue, but uses a priority queue based on the cost (the lowest cost node is chosen to be explored)



Uniform-cost search

The only modification is when exploring a node we cannot disregard it if it has already been explored by another node

We might have found a shorter path and thus need to update the cost on that node

We also do not terminate when we find a goal, but instead when the goal has the lowest cost in the queue.

Uniform-cost search

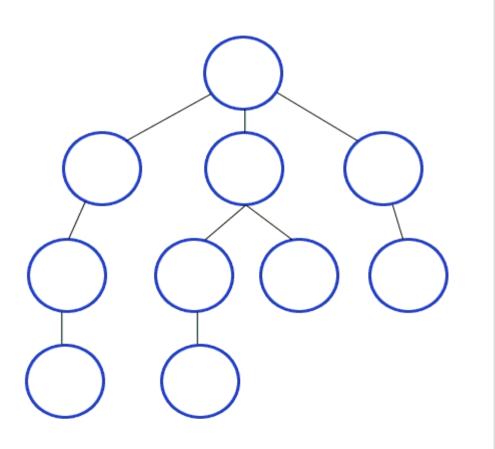
UCS is..

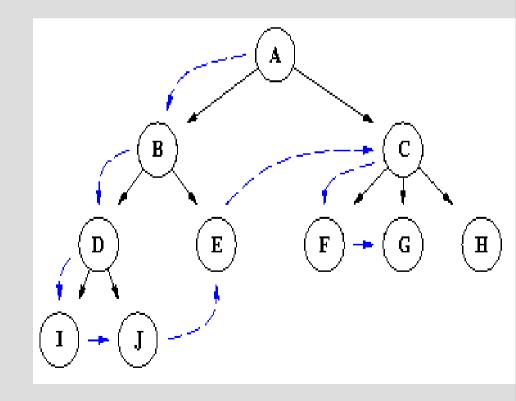
Complete (if costs strictly greater than 0)
 Optimal

However.... 3&4. Time complexity = space complexity = $O(b^{1+C*/min(path cost)})$, where C* cost of optimal solution (much worse than BFS)

Depth first search

DFS is same as BFS except with a FILO (or LIFO) instead of a FIFO queue





Depth first search

Metrics:

- 1. Might not terminate (not correct) (e.g. in vacuum world, if first expand is action L)
- 2. Non-optimal (just... no)
- 3. Time complexity = $O(b^m)$
- 4. Space complexity = O(b*m)

Only way this is better than BFS is the space complexity...

Depth limited search

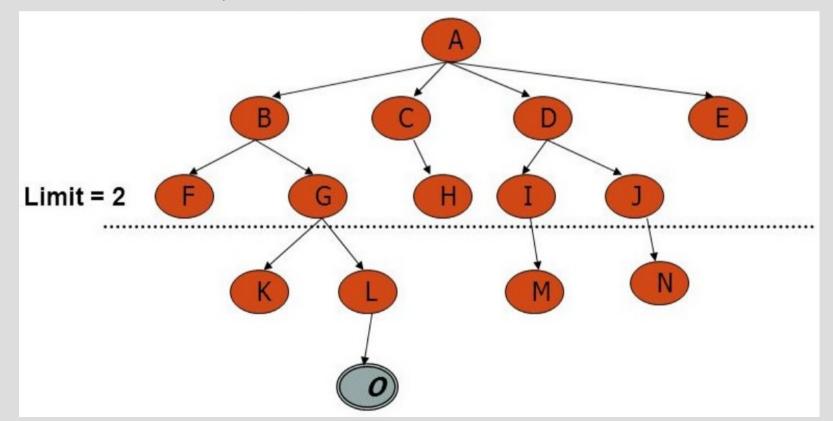
DFS by itself is not great, but it has two (very) useful modifications

<u>Depth limited search</u> runs normal DFS, but if it is at a specified depth limit, you cannot have children (i.e. take another action)

Typically with a little more knowledge, you can create a reasonable limit and makes the algorithm correct

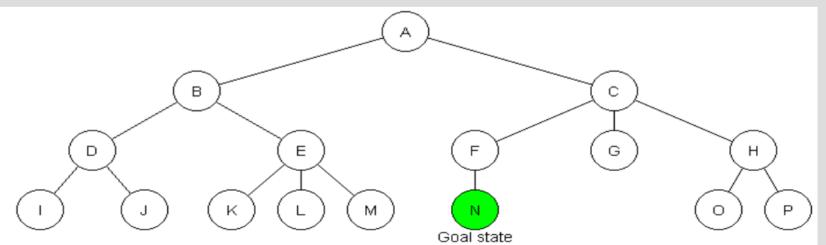
Depth limited search

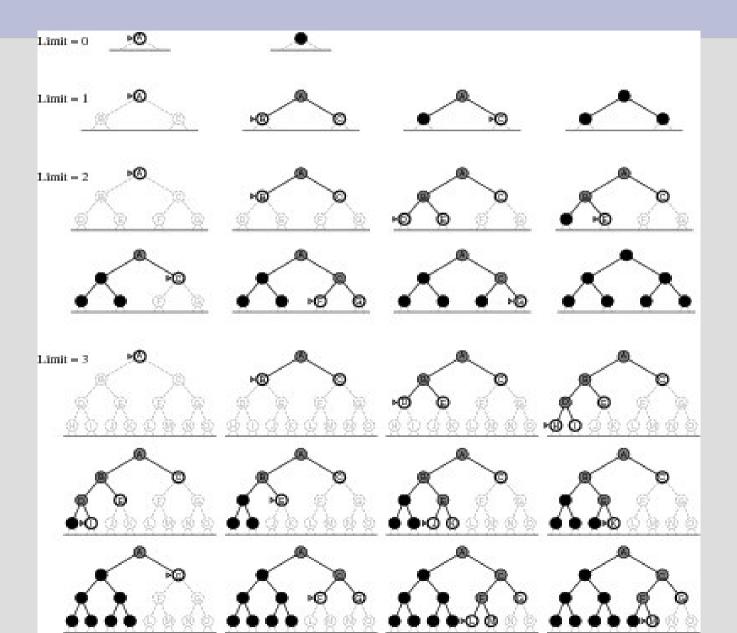
However, if you pick the depth limit before d, you will not find a solution (not correct, but will terminate)



Probably the most useful uninformed search is <u>iterative deepening DFS</u>

This search performs depth limited search with maximum depth 1, then maximum depth 2, then 3... until it finds a solution





The first few states do get re-checked multiple times in IDS, however it is not too many

When you find the solution at depth d, depth 1 is expanded d times (at most b of them)

The second depth are expanded d-1 times (at most b² of them)

Thus $d \cdot b + (d - 1) \cdot b^2 + ... + 1 \cdot b^d = O(b^d)$

Metrics: 1. Complete 2. Non-optimal (unless uniform cost) 3. O(b^d) 4. O(b*d)

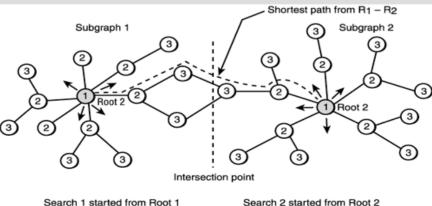
Thus IDS is better in every way than BFS (asymptotically)

Best uninformed we will talk about

Bidirectional search

<u>Bidirectional search</u> starts from both the goal and start (using BFS) until the trees meet

This is better as $2*(b^{d/2}) < b^d$ (the space is much worse than IDS, so only applicable to small problems)



Order of visitation: 1, 2, 3, ...

Summary of algorithms Fig. 3.21, p. 91

Ci.		6				2
Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening DLS	Bidirectional (if applicable)
Complete?	Yes[a]	Yes[a,b]	No	No	Yes[a]	Yes[a,d]
Time	O(b ^d)	$O(b^{1+C^*/\epsilon})$	O(b ^m)	O(b ^I)	O(b ^d)	O(b ^{d/2})
Space	O(b ^d)	$O(b^{1+C^*/\epsilon})$	O(bm)	O(bl)	O(bd)	O(b ^{d/2})
Optimal?	Yes[c]	Yes	No	No	Yes[c]	Yes[c,d]
					-	

There are a number of footnotes, caveats, and assumptions.

See Fig. 3.21, p. 91.

- [a] complete if b is finite
- [b] complete if step costs $\geq \varepsilon > 0$
- [c] optimal if step costs are all identical

(also if path cost non-decreasing function of depth only)

[d] if both directions use breadth-first search

(also if both directions use uniform-cost search with step costs $\geq \varepsilon > 0$)

Generally the preferred uninformed search strategy