
Planning (Ch. 10)

GraphPlan: states

Let's consider this problem:

M

W

D

T

F

C
┐C

G
┐G

Q
┐Q
P

Mutexes

C

G

Q

M

W

D

T

F

C
┐C

G
┐G

Q
┐Q
P

Blue mutexes
dissappear

Pink = new mutex

GraphPlan as heuristic

GraphPlan is optimistic, so if any pair of goal
states are in mutex, the goal is impossible

3 basic ways to use GraphPlan as heuristic:
(1) Maximum level of all goals
(2) Sum of level of all goals (not admissible)
(3) Level where no pair of goals is in mutex

(1) and (2) do not require any mutexes, but are
less accurate (quick 'n' dirty)

GraphPlan as heuristic

For heuristics (1) and (2), we relax as such:
1. Multiple actions per step, so can only take

fewer steps to reach same result
2. Never remove any states, so the number

of possible states only increases

This is a valid simplification of the problem,
but it is often too simplistic directly

GraphPlan as heuristic

Heuristic (1) directly uses this relaxation and
finds the first time when all 3 goals appear
at a state level

(2) tries to sum the levels of each individual
first appearance, which is not admissible
(but works well if they are independent parts)

Our problem: goal={Food, ┐Garbage, Present}
First appearance: F=1, ┐G=1, P=1

GraphPlan: states

C

G

Q

M

W

D

T

F

C
┐C

G
┐G

Q
┐Q
P

Level 0: Level 1:

Heuristic (1):
Max(1,1,1) = 1

Heuristic (2):
1+1+1=3

GraphPlan as heuristic

Often the problem is too trivial with just
those two simplifications

So we add in mutexes to keep track of invalid
pairs of states/actions

This is still a simplification, as only impossible
state/action pairs in the original problem are
in mutex in the relaxation

GraphPlan as heuristic

Heuristic (3) looks to find the first time none
of the goal pairs are in mutex

For our problem, the goal states are:
(Food, ┐Garbage, Present)

So all pairs that need to have no mutex:
(F, ┐G), (F, P), (┐G, P)

Mutexes

C

G

Q

M

W

D

T

F

C
┐C

G
┐G

Q
┐Q
P

None of the
pairs are in
mutex at
level 1

This is our
heuristic
estimate

Finding a solution

GraphPlan can also be used to find a solution:
(1) Converting to a Constraint Sat. Problem
(2) Backwards search

Both of these ways can be run once GraphPlan
has all goal pairs not in mutex (or converges)

Additionally, you might need to extend
it out a few more levels further to find a
solution (as GraphPlan underestimates)

GraphPlan as CSP

Variables = states, Domains = actions out of
Constraints = mutexes & preconditions

from Do & Kambhampati

Finding a solution

For backward search, attempt to find arrows
back to the initial state(without conflict/mutex)

Start by finding actions that satisfy all goal
conditions, then recursively try to satisfy
all of the selected actions’ preconditions

If this fails to find a solution, mark this level
and all the goals not satisfied as: (level, goals)
(level, goals) stops changing, no solution

Graph Plan

Remember this...

Graph Plan
 D D D

┐D ┐D ┐D ┐D

 S S S

┐S ┐S ┐S ┐S

 M M M

┐M ┐M ┐M ┐M

Sc

J

Sc

P

J

Sc

P

J

Ask:
┐D^S^┐M
Find first
no mutex...

Graph Plan
 D D D

┐D ┐D ┐D ┐D

 S S S

┐S ┐S ┐S ┐S

 M M M

┐M ┐M ┐M ┐M

Sc

J

Sc

P

J

Sc

P

J

Ask:
┐D^S^┐M
... then back
search

Error! States of
1&4 in mutex

1.

2.

3.

Graph Plan
 D D D

┐D ┐D ┐D ┐D

 S S S

┐S ┐S ┐S ┐S

 M M M

┐M ┐M ┐M ┐M

Sc

J

Sc

P

J

Sc

P

J

Ask:
┐D^S^┐M
try different
back path...

1.
2.

Error, actions
3&4 in mutex

3.

4.

Graph Plan
 D D D

┐D ┐D ┐D ┐D

 S S S

┐S ┐S ┐S ┐S

 M M M

┐M ┐M ┐M ┐M

Sc

J

Sc

P

J

Sc

P

J

Ask:
┐D^S^┐M
found
solution!

Finding a solution

Formally, the algorithm is:

graph = initial
noGoods = empty table (hash)
for level = 0 to infinity

if all goal pairs not in mutex
solution = recursive search with noGoods
if success, return paths

if graph & noGoods converged, return fail
graaph = expand graph

M

W

D

T

F

C
┐C

G
┐G

Q
┐Q
P

Mutexes

C

G

Q

M

W

D

T

F

C
┐C

G
┐G

Q
┐Q
P

You try it!

Neural networks (Ch. 12)

Biology: brains

Computer science is fundamentally a creative
process: building new & interesting algorithms

As with other creative processes, this involves
mixing ideas together from various places

Neural networks get their inspiration from
how brains work at a fundamental level
(simplification... of course)

Biology: brains

(Disclaimer: I am not a neuroscience-person)
Brains receive small chemical signals at the
“input” side, if there are enough inputs to
“activate” it signals an “output”

Biology: brains

An analogy is sleeping: when you are asleep,
minor sounds will not wake you up

However, specific sounds in combination
with their volume will wake you up

Biology: brains

Other sounds might help you go to sleep
(my majestic voice?)

Many babies tend to sleep better with “white
noise” and some people like the TV/radio on

Neural network: basics

Neural networks are connected nodes, which
can be arranged into layers (more on this later)

First is an example of a perceptron, the most
simple NN; a single node on a single layer

Neural network: basics

Neural networks are connected nodes, which
can be arranged into layers (more on this later)

First is an example of a perceptron, the most
simple NN; a single node on a single layer

inputs
output

activation function

Mammals

Let's do an example with mammals...

First the definition of a mammal (wikipedia):

Mammals [posses]:
(1) a neocortex (a region of the brain),
(2) hair,
(3) three middle ear bones,
(4) and mammary glands

Mammals

Common mammal misconceptions:
(1) Warm-blooded
(2) Does not lay eggs

Let's talk dolphins for one second.
http://mentalfloss.com/article/19116/if-dolphins-are-mammals-and-all-mammals-have-hair-why-arent-dolphins-hairy

Dolphins have hair (technically) for the first
week after birth, then lose it for the rest of life
... I will count this as “not covered in hair”

Perceptrons

Consider this example: we want to classify
whether or not an animal is mammal via
a perceptron (weighted evaluation)

We will evaluate on:
1. Warm blooded? (WB) Weight = 2
2. Lays eggs? (LE) Weight = -2
3. Covered hair? (CH) Weight = 3

Perceptrons

Consider the following animals:
Humans {WB=y, LE=n, CH=y}, mam=y

Bat {WB=sorta, LE=n, CH=y}, mam=y

What about these?
Platypus {WB=y, LE=y, CH=y}, mam=y
Dolphin {WB=y, LE=n, CH=n}, mam=y
Fish {WB=n, LE=y, CH=n}, mam=n
Birds {WB=y, LE=y, CH=n}, mam=n

http://mentalfloss.com/article/19116/if-dolphins-are-mammals-and-all-mammals-have-hair-why-arent-dolphins-hairy

Perceptrons

But wait... what is the general form of:

Perceptrons

But wait... what is the general form of:

This is simply one side of a plane in 3D,
so this is trying to classify
all possible points using
a single plane...

Perceptrons

If we had only 2 inputs, it would be everything
above a line in 2D, but consider XOR on right

There is no way a line can possibly classify
this (limitation of perceptron)

Neural network: feed-forward

Today we will look at feed-forward NN, where
information flows in a single direction

Recurrent networks can have outputs of one
node loop back to inputs as previous

This can cause the NN to not converge on an
answer (ask it the same question and it will
respond differently) and also has to maintain
some “initial state” (all around messy)

Neural network: feed-forward

Let's expand our mammal classification to
5 nodes in 3 layers (weights on edges):

WB

LE

CH

N1

N2 N4

N3

N5

2

-1

-1

3
1

-2
1

2

1

2

if Output(Node 5) > 0, guess mammal

Neural network: feed-forward

You try Bat on this:{WB=0, LE=-1, CH=1}

WB

LE

CH

N1

N2 N4

N3

N5

2

-1

-1

3
1

-2
1

2

1

2

if Output(Node 5) > 0, guess mammal

Assume (for now) output = sum input

Neural network: feed-forward

Output is -7, so bats are not mammal... Oops...

0

-1

1

1

4 5

-6

-7

2

-1

-1

3
1

-2
1

2

1

2

if Output(Node 5) > 0, guess mammal

Neural network: feed-forward

In fact, this is no better than our 1 node NN

This is because we simply output a linear
combination of weights into a linear function
(i.e. if f(x) and g(x) are linear... then
g(x)+f(x) is also linear)

Ideally, we want a activation function that
has a limited range so large signals do not
always dominate

Neural network: feed-forward

One commonly used function is the sigmoid:

Back-propagation

The neural network is as good as it's structure
and weights on edges

Structure we will ignore (more complex), but
there is an automated way to learn weights

Whenever a NN incorrectly answer a problem,
the weights play a “blame game”...
- Weights that have a big impact to the wrong

answer are reduced

Back-propagation

To do this blaming, we have to find how much
each weight influenced the final answer

Steps:
1. Find total error
2. Find derivative of error w.r.t. weights
3. Penalize each weight by an amount

proportional to this derivative

Back-propagation

Consider this example: 4 nodes, 2 layers

N1

N2 N4

N3

in
2

in
1

w
1

w
2

w
3

w
4

w
5

w
6

w
7

w
8

1

This node as a constant bias of 1

out
1

out
2

b
1 b

2

Back-propagation

0.506

N2 N4

N3

in
2

in
1

.15

.2

.25

.3

.4

.45

.5

.55

1

Node 1: 0.15*0.05 + 0.2*0.1 = 0.35 as input
thus it outputs (all edges) S(0.35)=0.59327

out
1

out
2

0.35

0.6

0.05

0.1

Back-propagation

0.506

0.510 0.630

0.606

in
2

in
1

.15

.2

.25

.3

.4

.45

.5

.55

1
Eventually we get: out

1
= 0.606, out

2
= 0.630

Suppose wanted: out
1
= 0.01, out

2
= 0.99

out
1

out
2

0.35

0.6

0.05

0.1

Back-propagation

We will define the error as:
(you will see why shortly)

Suppose we want to find how much w
5
 is

to blame for our incorrectness

We then need to find:
Apply the chain rule:

Back-propagation

Back-propagation

In a picture we did this:

Now that we know w5 is 0.08217 part
responsible, we update the weight by:
w

5
 ←w

5
 - α * 0.0645 = 0.374 (from 0.4)

α is learning rate, set to 0.5

Back-propagation

Updating this w
5
 to w

8
 gives:

w
5
 = 0.3589

w
6
 = 0.4067

w
7
 = 0.5113

w
8
 = 0.5614

For other weights, you need to consider all
possible ways in which they contribute

Back-propagation

For w
1
 it would look like:

(book describes how to dynamic program this)

Back-propagation

Specifically for w
1
 you would get:

Next we have to break down the top equation...

Back-propagation

Back-propagation

Similarly for Error
2
 we get:

You might notice this is small...
This is an issue with neural networks, deeper
the network the less earlier nodes update

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 57

