
CSCI 4041, Fall 2018, Programming Assignment 2 
Due Tuesday, 9/18/18, 10:30 AM (submission link on Canvas) 

 
This is not a collaborative assignment; you must design, implement and test the solution(s) on 
your own.  You may not consult or discuss the solution with anyone other than the course 
instructor or TAs.  In addition, you may not include solutions or portions of solutions obtained 
from any source other than those provided in class.  Obtaining or sharing solutions to any 
programming assignment for this class is considered academic misconduct.  If you are not sure 
what this means, consult the class syllabus or discuss it with the course instructor. 
 
You are placed in charge of the email servers as part of your unpaid internship at Holistic 
Synergies, Ltd.  Your supervisor, Dr. Boss Manager III, has compromised company security by 
leaking data to hackers over email on multiple occasions.  However, he has a solution.  After 
watching a certain sci-fi movie series, Dr. Manager has come to the conclusion that hackers 
always use short, trendy names like “Neo” or “Cypher”.  Therefore, rather than displaying emails 
in order from newest to oldest, he orders you to reprogram the server to display emails from 
longest sender name to shortest, so that all of the emails from people with short hacker names 
are pushed to the bottom. 
 
Speed is of the utmost importance to Holistic Synergies, Ltd., so you will be implementing this 
email sorting routine in Quicksort.  However, Dr. Manager believes that his ancient enemy, Ted 
from Accounting, will take advantage of Quicksort’s O(n2) worst-case runtime to slow down his 
email by sending many consecutive emails from aliases of ever-increasing length.  So, he also 
requires that a backup implementation be created using Merge Sort. 
 
Download the template PA2.py from the class website.  The template includes a Email class, 
which consists of two instance variables: sender, which is a string representing the name of the 
person or entity who sent the email, and subject, which is a string representing the subject line 
of the email.  The file also includes some test cases representing sample inboxes for Holistic 
Synergies, Ltd. employees.  You’ll need to implement Merge Sort and Quicksort algorithms 
which operate on a list of Email objects, and sort them in non-increasing order by the length of 
the sender string. 
 
 
Requirements: 

● You must download the template file PA2.py and edit the merge, merge_sort, 
partition, and quick_sort functions.  Do not edit any other part of the file. 

● Your program must run without errors on the version of Python installed on the CSELabs 
machines, Python 3.5.2. (if you’re testing this on CSELabs, you need to type python3 or 
idle3 instead of python or idle to start the correct version from the terminal) 

● You are not permitted to use any built-in Python sorting routines like the sorted() 
function or the .sort() list method.  You are also not allowed to use any Python 
function that asks for user input, such as input(), as this will break the grading script. 



You may not import any modules other than traceback, which is already imported by the 
template. 

● You must implement the Quicksort and Merge Sort algorithms as described in the 
textbook.  Any other sorting algorithms will receive very little credit, even if you pass 
every test case.  

● However, note that while the textbook algorithms describe how to sort a list of numbers 
in non-decreasing order, this problem requires you to sort a list of Email objects in 
non-increasing order by length of sender name, so you will need to adjust the algorithm 
slightly. 

● The textbook version of Merge Sort is a stable algorithm; your Merge Sort must also be 
stable; the final Merge Sort test case checks this.  Quicksort is not stable, so yours does 
not have to be. 

● This assignment will be graded automatically based on the number of test cases your 
program passes.  There will be several secret test cases in addition to the ones included 
in the template to ensure you’re not hard-coding in the solutions. 

● The grading breakdown for this assignment is as follows: 
○ 30%: File runs without syntax errors 
○ 70%: Passing test cases without breaking any requirements. 

● The unedited template file already runs without syntax errors and passes 6/12 test cases 
(because 6 of the 12 test cases are lists that are already in sorted order).  This means 
that if your program causes syntax errors or passes less than 6/12 test cases, you will 
get a better score by just submitting the original template unedited. 

● Submit your edited PA2.py file to the Programming Assignment 2 link on Canvas before 
10:30 AM on 9/18/18.  No credit will be given for late submissions. 

 
 
 


