
CSCI 4041, Fall 2018, Programming Assignment 1
Due Tuesday, 9/11/18, 10:30 AM (submission link on Canvas)

This is not a collaborative assignment; you must design, implement and test the solution(s) on
your own. You may not consult or discuss the solution with anyone other than the course
instructor or TAs. In addition, you may not include solutions or portions of solutions obtained
from any source other than those provided in class. Obtaining or sharing solutions to any
programming assignment for this class is considered academic misconduct. If you are not sure
what this means, consult the class syllabus or discuss it with the course instructor.

The ​painter’s algorithm​ is a simple technique used in computer graphics for rendering a scene
in which some elements obscure parts of other elements. The idea is that if you sort the objects
in your scene by their depth into the screen, and then draw them in order, starting with the most
distant and ending with the closest, you will naturally draw things in the foreground over the top
of things in the background.

For example, below are two renderings of a scene that consists of overlapping rectangles. On
the left is the intended image. The rectangles representing the background are overlapped by
those in the foreground, giving a sense of depth. On the right is an image generated by drawing
the same rectangles in a different order. You’ll notice that the building has been completely
obscured by the background, and that the river has been drawn over the top of parts of the
trees.

In this assignment, you’ll be implementing the painter’s algorithm using Insertion Sort.
Download the template PA1.py from the class website. The template includes a ​Rectangle
class, including a draw method to sketch a given ​Rectangle​ object using Python’s ​turtle
module, along with some test cases, including the sample scene above. You’ll need to
implement the ​Insertion_Sort​ method, which takes one argument, a list of ​Rectangle
objects, and uses the Insertion Sort algorithm presented in the textbook to sort that list based on

https://en.wikipedia.org/wiki/Painter%27s_algorithm

each ​Rectangle​’s ​d​ attribute, which represents the depth, from high ​d​ to low ​d​ (that is, furthest
away to closest). See the image on the next page for the ​d​ values for the example scene. If
done correctly, running PA1.py should result in the image on the left.

Requirements:

● You must download the template file PA1.py and edit the ​Insertion_Sort​ function. Do
not edit any other part of the file.

● Your program must run without errors on the version of Python 3 installed on the
CSELabs machines, Python 3.5.2 (if you’re testing this on CSELabs, you need to type
python3 or idle3 instead of python or idle to start the correct version from the terminal)

● You are not permitted to use any built-in Python sorting routines like the ​sorted()
function or the ​.sort()​ list method. You are also not allowed to use any Python
function that asks for user input, such as ​input()​, as this will break the grading script.

● You must implement the Insertion Sort algorithm as described in the textbook. Any other
sorting algorithm will receive very little credit, even if you pass every test case.

● However, note that while the Insertion Sort algorithm in the textbook describes how to
sort a list of numbers in non-decreasing order, you must sort a list of Rectangle objects
in non-increasing order by depth, so some adjustments to the algorithm will be needed.

● Note that there are some test cases that include multiple ​Rectangle​s in the list with the
same ​d​ value. The Insertion Sort algorithm presented in the textbook is stable: that is, if
two items are “equal” for the purposes of sorting, and one appears before the other in
the original list, they will still appear in that order in the list after it has been sorted. To
pass all test cases, your Insertion Sort must also be stable.

● This assignment will be graded automatically based on the number of test cases your
program passes. There will be several secret test cases in addition to the ones included
in the template to ensure you’re not hard-coding in the solutions.

● The grading breakdown for this assignment is as follows:
○ 30%: File runs without syntax errors
○ 70%: Passing test cases without breaking any requirements.

● The unedited template file already runs without syntax errors and passes 3/6 test cases
(because 3 of the 6 test cases are lists that are already in sorted order). This means that
if your program causes syntax errors or passes less than 3/6 test cases, you will get a
better score by just submitting the original template unedited.

● Submit your edited PA1.py file to the Programming Assignment 1 link on Canvas before
10:30 AM on 9/11/18. No credit will be given for late submissions.

For reference, here are the depth (​self.d​) values of each Rectangle in the sample scene:

