CSci 2021: Review Lecture 2

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Midterm 2 topics (in one slide)

©) Machine-level code representation
® Instructions, operands, flags
® Branches, conditions, and loops
® Procedures and calling conventions
® Arrays, structs, unions
» Buffer overflow attacks
©) Dynamic memory allocation
8 Implementation techniques
® Pitfalls
£ CPU architecture
® Y86 instructions
® Control logic and HCL
8 Sequential Y86-64
® Pipelined Y86-64

Outline

Topics in machine code

Instructions and operands

0 Assembly language < machine code
©) Sequence of instructions, encoded in bytes

©) An instruction reads from or writes to operands

® x86: usually at most one memory operand
® AT&T: destination is last operand
® AT&T shows operand size with b/w/l/q suffix

Addressing modes

©) General form: disp(base,index, scale)

® Displacement is any constant, scaleis 1, 2, 4 or 8
® Base and index are registers
® Formula: mem(disp + base + index - scale]

&) All but base are optional
® Missing displacement or index: O
® Missing scale: 1
® Drop trailing (but not leading) commas
©) Do same computation, just put address in
register: lea

Flags and branches

©) Flags (aka condition codes) are set based on
results of arithmetic
® ZF: result is zero
® SF: result is negative (highest bit set)
® OF: signed overflow occurred
® CF: unsigned overflow (“carry”) occurred
©) Used for condition in:
® setCC: storelor O
® cmovCC: copy or don't copy
® jCC: jump or don't jump
0 Just for setting flags: cmp (like sub), test (like
and)

Loops

©) Simplest structure: conditional jump “at the
bottom”, like a C do-while

©) C while also checks at beginning

£) C for eg. initializes a variable and updates it on
each iteration

©) Assembly most like C with goto

Stack and frames

©) “The" stack is used for data with a function
lifetime

0 %rsp points at the most recent in-use element
("top”)

©) Convenient instructions: push and pop

©) Section for one run of a function: stack frame

Calling conventions

£ Function arguments go in %rdi, %rsi, %rdx,
%rcx, %r8, and %r9

©) Return value is in %rax

©) Handle that both caller and callee want to use
registers
) Caller-saved: callee might modify, caller must
save if using
® Yrax, %rdi, ..., %ri0, %ri1, flags
) Callee-saved: caller might be using, callee must
save before using
® Jrbx, %rl2, ..., hrbp, (hrsp)

Arrays

©) Sequence of values of same size and type, next
to each other

©) Numbered starting from O in C

o) To find location: start with base, add index times
size

o) C's pointer arithmetic is basically the same
operation

©) Multi-dimensional array

® Needs more multiplying
o) Array of pointers to arrays

o Different, more flexible layout
® Each access needs more loads

Structs and unions

£) Struct groups objects of different types and
sizes, in order

) Fields often accessed using displacement from
a pointer

©) Alignment requirements — padding

® Primitive values aligned to their size

® Pad between elements, when next needs more
alignment

® Pad at end, to round off total size

©) Unions: “like structs where every offset is 0"

® Used to save space if only one needed at a time
® Can also reveal storage details

Buffer overflows

©) Local arrays stored on the stack

) C compilers usually do not check limits of array
accesses

©) Too much buffer data can overwrite a return
address

® Changes what code will execute
® Various nefarious uses

©) Various partial defenses:

® Randomize stack location
= Non-executable stack
® Stack canary checking

Outline Announcements

Announcements break ©) Solution set for Exercise Set 3 is up now

® First draft: some expansions/corrections later
® Also open for Moodle forum discussion

©) HA4 is due Monday night

Outline Implementing malloc

©) Data structures to represent the heap
® Boundary tags and the implicit list

o . . ® Explicit free list(s)

Topics in dynamic allocation © Algorithms for heap management

® First fit vs. best fit
® Size segregation

Dynamic allocation pitfalls Outline

©) Allocating too big or too small

) Freeing too soon or more than once
£) Mixing up local and dynamic objects
©) Uninitialized memory

£) Memory leaks (failing to free)

) Debug with GDB or Valgrind

©) Alternative: garbage collection

Topics in CPU architecture

Y86-64 instructions

©) Simplified subset of x86-64, simpler encoding
£) 64-bit only, 15 registers

) Four kinds of moves, only one addressing mode
£) Add, subtract, bitwise and, bitwise xor

) Conditional jump and move based on equality
and signed comparison

) Call, return, push, pop
©) Halt and two fatal errors, no exceptions

Logic design for control

©) Combinational circuits:
= Compute a function of bits, no memory
® Acyclic network of AND, OR, and NOT gates
® Also includes word-sized comparison, multiplexors,
and ALU
) Stateful elements:
8 (Clocked) registers
® Random-access memory
® State updates occur on rising clock edge only

Hardware design in HCL

©) Simple language for specifying control circuits

£) Two types: Boolean and word

) Comparison and logic operators (no side-effects
or “short circuiting”)

£) Core construct: sequential conditional

8[C:V;C: Vol 1V
® “Else” case written 1

Sequential Y86-64

©) Whole state update function is one big
combinational circuit
©) Express behavior of each instruction using
smaller computations
©) Processing split into stages for organization:
® Fetch, decode, execute, memory, write back, PC
update

©) Simplest, but requires long cycle time (slow)

Pipelining basics

) Split processing into stages, and work on
multiple instructions at once

©) Reduces cycle time and increases hardware
utilization

©) Pipeline registers hold data between stages

£) Performance concerns: balanced stages, and
not too many

) Correctness concerns: must have same final
behavior

Pipelining techniques

©) Hazards: dependencies introduce danger of
incorrect results

©) Branch prediction: guesses result of conditional
jumps

o) Stalling: hold up instructions until data ready

® Simple, but introduces a lot of delay
® Used for return instruction in Y86-64

©) Cancelling: Kill incorrect instructions
® Must happen before they have side-effects
® Used for branch mis-predictions
©) Forwarding: copy data to a different stage right
as needed

Outline

Review questions

Calling conventions

According to the standard x86-64 calling
convention, which of these registers would your
function need to save before modifying it?

A Yrdi
B. Yrsi
C. %r10
D %rbx
E.

%rax

Xx86-64 instructions

Which two instructions can be used to compare
%rax to zero?

A cmp $0, %rax and test $0, Jrax

B. cmp $0, Yrax and test %rax, %rax
C. cmp %rax, %raxand test $0, Yrax
D

cmp %rax, %rax and test Yrax, JYrax

for loops

Which of these while loop patterns is equivalent to
the loop for (A; B; C) { D; }?

A A; while (B && C) { D; }

B. B; while (A) {D; C}

C. A; while (B) {C; D}

D A; while (B) {C; D; C}

E. A; while (B) {D; C}

Structure padding

Because of padding, which of these structs would
not be the same size as the others?

A struct { short s; long 1; }
struct { float f; double d; }
struct { char c; long 1; }
struct { long 11; long 12; %
struct { int il; int i2; %}

moOw

Y86-64 instructions

Which of these Y86-64 instructions is an indirect
jump?

A call

B. ret

C. jmp

D jle

E. jne

